Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные направления современной аналитической химии

    Ионометрия - современное прогрессивное направление в развитии потенциометрического метода анализа и исследования. Основная задача ионометрии заключается в разработке, изучении и примене1у1и разнообразных ионоселективных электродов, обратимых и достаточно селективных к различным катионам и анионам. К ионометрии относятся давно известный метод -рН-метрия и новые методы прямой потенциометрии - катионо-метрия и анионометрия. Ионометрия находит широкое применение в науке и технике в технологии для автоматического конт роля производственных процессов, при анализе и контроле чистоты водного пространства и окружающей атмосферы, в аналитической химии, биологии, геологии, почвоведении, медицине, океанологии и т.д. С помощью метода ионометрии успешно решаются задачи анализа и исследования применительно к сложным многокомпонентным системам. [c.38]


    С другой стороны, современная аналитическая химия испытывает сильное влияние экспериментальной физики и физической химии. Мощное развитие этих наук, чрезвычайное разнообразие и точность их мет( ов изучения материи все больше изменяет основное направление развития аналитической химии. Для решения задач химического анализа в различных областях промышленности, науки и новой техники весьма широко исполь- [c.15]

    ОСНОВНЫЕ НАПРАВЛЕНИЯ СОВРЕМЕННОЙ АНАЛИТИЧЕСКОЙ ХИМИИ [c.9]

    Биологическая химия — это наука о химических основах жизни. Биологическая химия (в дальнейшем — биохимия) является интегральной наукой и связывает в единое целое химические, физические и биологические науки с целью познания химической сущности живой материи. Основные направления химии — неорганическая, органическая, аналитическая и физическая — предоставляют биохимии научную базу для исследования явлений жизни на атомно-молекулярном уровне, позволяя использовать для этого все возможности и достижения современной химической науки, а также химическую терминологию. В свою очередь, биохимия является важнейшим инструментом, с помощью которого биологи, медики и химики выясняют биологические функции химических соединений, изучают физико-химические процессы, протекающие в живых организмах, а также механизмы нарушения этих процессов как причины развития любой патологии. Целая область практической, прикладной биохимии — клиническая и фармацевтическая биохимия — направлена на решение главных задач медицины — диагностики и лечения различных заболеваний. [c.18]

    Лаблюдаемый в последнее время быстрый научный и техниче- ский прогресс в области химии м химической технологии органических и неорганических веществ вызывает острую необходимость дальнейшего развития аналитической химии и разработки новых более эффективных химических, физических и физико-химических методов анализа, соответствующих современным требованиям науки и производства. Одним из перспективных путей развития аналитической химии является направление, которое связано с разработкой теории и практики методов анализа, основанных па использовании реакций, протекающих в неводных растворах [1—26]. Основное преимущество использования неводных растворителей в качестве сред для определения различных веществ состоит в том, что в среде неводных растворителей можно дифференцированно (раздельно) титровать смеси электролитов, которые в водном растворе характеризуются близкими значениями р/С, например смеои изомеров, смеси соединений одного гомологического ряда, смеси кислот, оснований и т. д. [c.5]


    ХИМИЯ — одна из областей естествознания, наука о химических элементах, их соединениях и химических превращениях, возникающих в результате химических реакций. Современная X. подразделяется на четыре основных направления неорганическую, органическую, физическую и аналитическую химию. Кроме этого, в связи с развитием науки X. возник ряд подразделов коллоидная X., X. мономеров и полимеров, X. редких элементов, X. природных соединений, X. поверхностно-активных веществ, X. комплексных соединений и др. Современная X. тесно переплетается с другими науками, в результате чего воз 1И-кают смежные области науки биохимия, геохимия, агрохимия, космохимия, химическая физика, нефтехимия и другие, которые дополняют, расширяют и развивают применение химических знаний в различных отраслях деятельности человека. X. находится в тесном единстве с практикой, она развивалась и развивается в связи с практическими потребностями человека. Развитие химической науки и техники привело к интенсивному росту химической промышленности, которая имеет важное значение в техническом прогрессе всех отраслей народного хозяйства. [c.275]

    Поэтому современная аналитическая химия испытывает сильное влияние экспериментальной физики и физической химии. Прогресс этих наук, чрезвычайное разнообразие и точность их методов изучения материи Ез значительной степени изменяют основное направление развития аналитической химии. Все большее значение приобретают новые физические и физико-химические (инструментальные) методы анализа, широко применяемые в различных областях науки, техники и промышленности, и, поскольку эти методы решают задачи химического анализа, они составляют одну из неотъемлемых частей аналитической химии. [c.17]

    Анализ загрязнений в чистых соединениях и определение примесей в товарных продуктах является одним из основных направлений развития современной аналитической химии [8]. Согласно определению Ногаре и Джу-вета [9], будем считать компоненты анализируемой смеси примесями, если их концентрация равна или меньше [c.49]

    Козловский М. Т. Основные направления в современной аналитической химии. Научно-техническая конференция работников заводских и аналитических лабораторий предприятий цветной металлургии Казахстана и республик Средней Азии. Алма-Ата.- [c.14]

    Многие физические и химические свойства вещества (например, электропроводность, люминесценция, радиационная стабильность и т. п.) зависят от степени его чистоты часто ничтожные примеси в концентрации 10 2—10 % резко изменяют наблюдаемые свойства вещества, что исключает возможность их применения во многих химических процессах и приборах. Необходимым условием проведения почти любого корректного научного исследования является применение только особо чистых соединений в условиях, исключающих их загрязнение. Поэтому анализ загрязнений в чистых соединениях и определение примесей в товарных продуктах в настоящее время является один из основных направлений развития современной аналитической химии [1]. К чистоте исходных веществ в реакциях полимеризации также предъявляются очень высокие требования. В табл. 1 [4] в качестве примера приведены требования к чистоте углеводородных мономеров. В зависимости от реакционной способности предельная концентрация примесей не должна превышать —10 %. Содержание примесей в растворителях и в других веществах, применяемых для реакции, не должно превышать, по-видимому, предельно допустимых норм для мономеров. Столь высокие требования по чистоте исходных веществ, естественно, предъявляются только в отношении вредных примесей, образующих нежелательные продукты или существенно уменьшающих скорость процесса. [c.327]

    Аналитическая химия — одна из основных химических дисциплин. Ее задачи и цели — обучить студентов методам определения состава вещества. В связи с широким применением органических реагентов, индикаторов, экстрагентов, органических растворителей, ионитов аналитическую химию необходимо изучать на основе не только неорганической, но и органической химии. Современное развитие физики и физической химии меняет направление аналитической химии в сторону использования физических и физико-химических методов анализа. Это, в частности, нашло отражение в Государственной Фармакопее СССР IX и X изданий с начала 60-х годов. [c.3]

    Исследования, проводимые аналитическим отделом ордена Ленина и ордена Октябрьской Революции Института геохимии и аналитической химии им. В. И. Вернадского АН СССР, охватывают все основные современные направления развития химического анализа в стране. Существенно, что они органически сочетают разработку фундаментальных основ знания с решением многообразных актуальных аналитических прикладных задач. Краткий обзор основных теоретических работ отдела дан в вводной статье сборника. [c.3]


    В связи с интенсивным развитием производства пластмасс и их широким использованием в народном хозяйстве проблема анализа полимерных материалов приобрела в аналитической химии большое значение. Основными направлениями экономического и социального развития СССР на 1986—1990 годы и на период до 2000 года предусматривается довести в 1990 году выпуск синтетических смол и пластических масс до 6,8—7,1 млн. т, обеспечить ускоренное развитие производства современных конструкционных пластических масс и других полимеров. Решение этих задач невозможно без надежного аналитического обеспечения. [c.3]

    Однако успехи этого направления не обеспечивали полностью решения новых аналитических проблем, так как наиболее чувствительные современные методы определения примесей, в частности масс-спектральный и ра-диоактивационный, связаны с использованием дорогостоящей и не всегда доступной аппаратуры. С другой стороны, возможности повышения чувствительности распространенных методов анализа, например спектрального и полярографического, выявлялись относительно медленно, что ограничивало применение этих методов для определения ультрамалых количеств примесей. Последнее обстоятельство предопределило развитие второго направления аналитической химии малых концентраций, целью которого является разработка приемов предварительного концентрирования примесей для повышения относительной чувствительности определения. Концентрирование, заключающееся в большинстве случаев в удалении основной части макрокомпонента и последующем анализе концентрата, сильно увеличило значение эмиссионного спектрального анализа, полярографии н некоторых других методов. Широкое распространение соответствующих приборов и накопленный ранее опыт работы с ними обеспечили выполнение массовых анализов для определения примесей. Так, химико-спектральные методы в настоящее время являются, по-видимому, наиболее распространенными методами определения металлов-примесей в веществах особой чистоты. Это потребовало развития самих методов концентрирования — экстракции, соосаждения, дистилляции и других. [c.10]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]

    Основные, традиционные исследования в области химии нефти включают следующие направления. Первое - аналитическое направление, изучающее состав нефтей с целью практического применения нефтяных фракций и отдельных компонентов, а также решения геохимических задач по поиску новых месторождений нефти и газа. Знание потенциального химического состава нефти имеет определяющее значение для выбора оптимальной технологической схемы ее переработки. С помощью современных методов аналитической и органической химии в нефтях по данным Ал. А. Петрова было идентифицировано около 1000 индивидуальных соединений. [c.1]

    Последние два десятилетия ознаменовались большими успехами химии координационных соединений. В течение ряда лет после работ Альфреда Вернера развитие этого направления химической науки протекало сравнительно медленно затем интерес к химии координационных соединений постепенно начал все более возрастать, причем некоторые теоретические представления и методы исследования претерпели существенное изменение. Ранее основные усилия были направлены на увеличение числа полученных комплексных соединений и на изучение их строения и свойств главным образом химическими методами наряду с привлечением ограниченного числа физических методов, например измерения электропроводности водных растворов. Однако в последнее время фундаментальные исследования в области неорганической химии, связанные с работами по использованию атомной энергии, стимулировали интерес к координационной химии, поскольку большинство соединений переходных элементов, по крайней мере в водных растворах, являются комплексными кроме того, стало совершенно очевидным, что эта область представляет широкое поле ДЛЯ исследований, результаты которых могут найти применение в прикладной, аналитической и фармацевтической химии. Современное развитие координационной химии обусловлено двумя основными обстоятельствами, которые предшествовали работам по использованию атомной энергии. Речь идет о развитии квантовой механики и применении новых физических методов для изучения неорганических комплексных соединений. Эти две области развивались постепенно и взаимно дополняли друг друга. Специалисты по квантовой механике смогли связать стереохимию неорганических соединений с электронной конфигурацией атомов, но в большинстве случаев они вынуждены ограничиваться чисто качественными предсказаниями, а часто—указанием на формы, которые можно было бы приписать той или иной молекуле. Дальнейшее уточнение вопроса о форме молекулы часто может быть проведено на основе рассмотрения физических свойств вещества— [c.245]

    Природные и синтетические красители, пигменты, люминофоры, аналитические реагенты, катализаторы и ингибиторы химических процессов, сенсибилизаторы фотохимических реакций, биологически активные и лекарственные препараты, включая лекарства от рака и СПИДа - таковы основные направления применения антрахинонов. Химия, металлургия, геология, легкая, целлюлозно-бумажная и деревообрабатывающая промышленность, кино-, фото- и телеиндустрия, полиграфия, микроэлектроника, компьютерная техника, лазерная техника, современные средства записи, хранения и воспроизведения информации, фармацевтическая промышленность и медицина - далеко не полный перечень отраслей науки и техники, широко использующих антрахиноны. [c.3]

    В аналитической химии до самого последнего времени большое значение имел систематический качественный анализ. Если еще раз взглянуть на историю качественного химического анализа, то можно отметить некоторые ее вехи. Р. Бойль, видимо, первым использовал сероводород как химический реагент для обнаружения олова и свинца. Бергман сделал сероводород одним из главных реактивов, использовав его для получения осадков со многими металлами. В этом направлении много работали также Ж. Л. Гей-Люссак и другие химики XIX в. Отдельные качественные реакции накапливались еще со средних веков, в числе относительно новых можно назвать реакцию иода с крахмалом (Ф. Штромайер, 1815), фосфора с молибдатом (Л. Ф. Сванберг, 1848). Для получения сероводорода стали использовать аппарат Киппа (1864). Современная сероводородная схема качественного анализа оформилась в трудах Г. Розе, К. Р. Фрезениуса и др. Позднее, в основном в нынешнем веке, были предложены и другие схемы. [c.17]

    Определение характеристик атомных и молекулярных частиц (их строения, состава и т.д.) в аналитической химии называют качественньш анализом. Измерение относительного содержания каждой из атомных или молекулярных частиц в образце называют количественным анализом. Оба эти направления вносят свой вклад в быстрое развитие наутси и одновременно активно используют современные научные достижения. Новые методы анализа базируются на основополагающих открытиях в физике, химии и биологии. В свою очередь новые методы аналитической химии становятся основным двигателем прогресса в химии, медицине, в других науках, а также в самых разнобразных областях применения, таких как контроль за окружающей средой, управление промышленными процессами, здравоохранение, геология, сельское хозяйство, оборона и совершенствование законодательства. Производство аналитических приборов в США выросло в 10 раз, достигнув объема в 3 млрд. долл. В международной торговле аналитической аппаратурой США имеют положительный баланс примерно в 1 млрд. долл. [c.193]


Смотреть страницы где упоминается термин Основные направления современной аналитической химии: [c.11]    [c.2]    [c.219]    [c.27]    [c.438]    [c.219]    [c.2]   
Смотреть главы в:

Аналитическая химия -> Основные направления современной аналитической химии

Аналитическая химия -> Основные направления современной аналитической химии




ПОИСК





Смотрите так же термины и статьи:

Аналитическая химия

Современные направления



© 2025 chem21.info Реклама на сайте