Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель, анодное растворение сульфат-ионов

    Анионами в этом процессе могут быть и гидроксильные ионы ОН . Так, анодное растворение никеля в растворах сульфатов может быть представлено следующим образом  [c.227]

    Однако в случае никеля количественные закономерности процесса растворения заметно отличаются от установленных для железа. Найдено, например, что порядок анодной р)еакции по ионам гидроксила в сернокислых растворах в этом случае изменяется при переходе от одной области pH к другой [ 33]. Последнее удалось объяснить [41], приняв, что скорость растворения никеля является суммой скоростей растворения по механизмам с участием ОН -ионов и сульфат-ионов в адсорбированном состоянии и что кинетика процесса существенно зависит от взаимодействия адсорбированных ионов. [c.9]


    По данным [ 46 ], при растворении активного никелевого электрода в 0,01-1 н. растворах хлорной кислоты, содержащих перхлорат натрия в концентрациях от 3 до 7 М, зависимость скорости растворения металла от потенциала характеризуется двумя тафелевскими участками с наклонами 120 мв при низких и 40 мв при повыщенных плотностях тока. Одновременно установлен первый порядок реакции по ионам гидроксила. Такие результаты явились основанием для вывода о различной природе лимитирующей стадии в зависимости от величины поляризации (отщепление первого электрона при низких и второго при высоких плотностях тока) [ 46]. Обнаружено снижение скорости анодного растворения никеля в свежем сернокислом растворе в результате его длительного предварительного выдерживания в растворе серной кислоты, что объясняется адсорбционным вытеснением сульфат-ионами ионов он [35].  [c.10]

    В случае пассивности железа, хрома, никеля и кобальта в растворах окислителей типа азотной кислоты или в растворах серной кислоты и сульфатов при анодной поляризации на металлах существуют уже сформировавшиеся защитные плотные пленки, толщина которых соответствует одному или нескольким слоям кислорода. Наличие на поверхности тонкой пленки с высокой электронной, но низкой ионной проводимостью обусловливает избирательное торможение процесса анодного растворения кислорода. [c.15]

    При наличии в растворе, кроме гидроксильных ионов, галоидных ионов между ними возникает своеобразная конкуренция за более выгодные в энергетическом отношении участки поверхности металла, на которых происходит специфическая адсорбция анионов. Если лри этом оказывается, что анионы, в наибольшей степени стимулирующие процесс ионизации металла, вытесняются с его поверхности менее эффективными в этом отношении анионами, то вместо ускоряющего действия наступает торможение анодного растворения, т. е. ингибирование анодного процесса. Известно, например, что ионы йода задерживают ионизацию никеля в кислых растворах сульфат-ионов. Этот эффект можно понять в указанном плане как результат конкурирующей адсорбции между ионами йода и гидроксила, если предположить, что первичная неэлектрохимическая стадия ионизации никеля в сульфатном растворе состоит в образовании поверхностных комплексов этого металла с ОН-ионами  [c.112]


    Подобно тому, как было объяснено влияние галогенид-ионов на кинетику и механизм анодного растворения железа, можно объяснить влияние хлорид- и сульфат-ионов на анодное поведение никеля. [c.79]

    На рис. 3.7 показана зависимость плотности тока анодного растворения никеля от pH сульфатного раствора при различных концентрациях сульфат-ионов. В соответствии с литературными данными [17,20] видно, что до pH = 2 /а практически от pH не зависит, но увеличивается с ростом концентрации сульфат-ионов. При pH > 2, наоборот, скорость анодного процесса не зависит от [ЗО -] но увеличивается с ростом pH (табл. 3.9). [c.79]

    Сульфат никеля действует как основной источник ионов никеля. Хлорид никеля используется как добавка. Более высокие скорости осаждения могут быть достигнуты, когда возрастает отношение хлорида никеля к сульфату никеля. Имеются также патентованные растворы для блестящего никелирования, подходящие для высокоскоростного варианта нанесения покрытия. Ускорение происходит в основном в результате увеличения концентрации хлорида никеля. Ионы хлора также необходимы для обеспечения удовлетворительного растворения никелевых анодов при обычных значениях pH и температуре раствора. Там, где существует возможность включения серы в анод при его изготовлении, анодное растворение никеля идет более активно и концентрация ионов хлора в растворе может быть уменьшена или равна нулю в зависимости от того, какая степень активности будет достигнута и какая требуется максимальная плотность анодного тока. [c.435]

    Электрохимическое поведение никеля в активном состоянии во многом сходно с поведением железа. В сернокислых растворах растворение этого металла также осуществляется через последовательные электрохимические стадии с участием хемосорбированных ОН -ионов [ 9, 30-33 ] и сульфат-ионов [34,35]. В тех же условиях галогенид-ионы, присутствующие даже в небольших количествах, тормозят процесс, что можно связать с адсорбционным вытеснением ими иойов ОН [ 36], Скорость, анодного растворения активного никеля при постоянных потенциалах в кислых растворах электролитов на основе неводных растворителей - диметилсульфоксида [37], диметилформамида [38], метилового спирта [39] - возрастает с ростом содержания добавок воды в растворе. Электрохимические свойства активного никелевого анода изменяются с изменением кристаллографической ориентации граней монокристалла [40]. [c.9]


Смотреть страницы где упоминается термин Никель, анодное растворение сульфат-ионов: [c.188]    [c.188]   
Ингибиторы кислотной коррозии металлов (1986) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Анодное растворение

Растворение анодное никель

Сульфат никеля

Ток анодный



© 2025 chem21.info Реклама на сайте