Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондриальная ДНК дрожжей

    В случае митохондриальных интронов дрожжей белки не только специфичны по отношению к индивидуальным интронам, но и кодируются интронами, на которые затем и воздействуют. (Эта модель не применима ко всем ми- [c.261]

    Является ли специфическое разделение труда, демонстрируемое митохондриями и ядрами дрожжей, характерным и для других видов организмов Общее строение агрегатов, состоящих из белков со смешанным происхождением, сходно по крайней мере у митохондрий других грибов и млекопитающих. В геноме митохондрий дрожжей и млекопитающих присутствуют гены, кодирующие одни и те же белки. Таким образом можно сделать общее предположение о наличии значительной консервативности кодирующих функций митохондриальных геномов у различных видов организмов. [c.284]


    Митохондриальный геном дрожжей имеет большие размеры [c.284]

    Перестройки митохондриальной ДНК дрожжей [c.288]

    Общий вывод, который можно сделать на основе изучения митохондриальной ДНК петит-штаммов и штаммов дикого типа,-это значительная гибкость организации генома в отношении процессов его экспрессии и репликации. Возможно, что ее отличие от других митохондриальных ДНК обусловливает способность дрожжей существовать при полном отсутствии функционирования митохондрий. Было бы интересно выяснить, какие ферментные системы работают на этой ДНК. [c.288]

    Подавляющее количество ДНК сосредоточено в ядре, обычно лишь небольшая часть ДНК находится в составе генома цитоплазматических органелл. Митохондрии грибов и млекопитающих содержат менее 1 % всей ДНК, а пластиды растений — 1—10 %. В клетках дрожжей Sa haromy es erevisiae количество митохондриальной ДНК может достигать 20 "6 от всей клеточной. [c.186]

    В р-ции 1 цикла, катализируемой цитрат-оксалоацетат-лиазой, СНзС(0)8КоА стереоспецифично конденсируется с карбонильной группой оксалоацетата с образованием цитрата и свободного KoASH. Р-ция сопровождается значит, изменением своб. энергии (ДС — 32,24 кДж/моль) и является практически необратимой. Активность митохондриального фермента у дрожжей ингибируется АТФ. [c.634]

    Цитохромоксидазы выполняют в аэробных организмах уникальную функцию они соединяются с Ог почти таким же образом, как и гемоглобин, а затем быстро восстанавливают Ог до двух молекул НгО [24а]. Происходит разрыв связи О—О для восстановления требуется четыре электрона. Очевидно, процесс этот сложен и пока еще плохо изучен. Важно отметить, что цитохромоксидаза, содержащаяся в митохондриях млекопитающих, имеет два гема (цитохром а) и два атома u(I) на одну функциональную единицу. Таким образом, при восстановлении обеих молекул цитохрома а и двух атомов меди может быть запасено четыре электрона для последующего восстановления одной молекулы Ог. Химия цитохромоксидазы слабо изучена. Как впервые обнаружил Кейлин, только половина молекул цитохрома а соединяется с СО. Она была названа цитохромом аз. По данным электрофореза в полиакриламидном геле с додецилсульфатом натрия, в цитохромоксида-зе дрожжей имеется шесть или семь субъединиц с мол. весом от 5 000 до 42 000 [24Ь, с]. Интересно отметить, что три наиболее крупные субъединицы, по-видимому, кодируются генами митохондриальной ДНК. Группы гема присоединены к пептидам меньшего размера. Было высказано предположение, что в интактном ферменте молекула Ог вначале связывается между атомом железа цитохрома аз и ионом двухвалентной меди aV—Ог—Си+. На следующей стадии происходит двухэлектронный процесс восстановления Ог с образованием перекисной структуры и далее двух молекул воды. [c.376]

    Особые РНК-полимеразы обеспечивают транскрипцию клеточных органелл эукариот — хлоропластов и митохондрий. В составе хлоропластной ДНК обнаружены гены, гомологичные генам, кодирующим а-, - и -субъединицы РНК-полимеразы Е. oli. Это, а также сходство нуклеотидной последовательности промоторов бактерий и хлоропластов свидетельствует о том, что РНК-полимераза хлоропластов должна быть сходна с РНК-полимеразой бактерий. РНК-полимеразы митохондрий состоят, по-видимому, всего из одной субъединицы, подобно РНК-полимеразам, кодируемым некоторыми бактериофагами, такими, как ТЗ и Т7. РНК-полимераза митохондрий дрожжей сходна с РНК-полнмеразами этих фагов по аминокислотной последовательности. Ген, кодирующий митохондриальную РНК-полимеразу, располагается в ядре. [c.136]


    Митохотгдриями, или хондриосомами, называются органоиды клетки эукариотов, представляющие собой мембранные внутриклеточные образования. Форма и размеры их различны — от овальных и грущевидных телец до нитевидных или ветвистых. Наиболее полно митохондрии изучены у дрожжей и дрожжеподобных грибов в работах М. Н. Мейселя с сотр. [175, 176], в которых показано, что они не отличаются от митохондрий высших организмов. По своему назначению митохондрии представляют собой центры сосредоточения ферментов энергетического обмена. М. Н. Мейсель обнаружил [175], что клетки дрожжей при брожении содержат меньшее число митохондрий, которые гипертрофированы (бродильный тип клеток). Аналогичная картина наблюдается и в аэробных условиях при избытке углеводов в среде, особенно сахарозы и глюкозы. Цитологически наблюдается бродильная перестройка митохондриального аппарата. [c.71]

    Биологический смысл, заключенный в гомологии последовательностей, лучше всего можно проиллюстрировать на примере цитохрома с-железосодержащего митохондриального белка, участвующего в качестве переносчика электронов в процессах биологического окисления в эукариотических клетках. Молекулярная масса этого белка у большинства видов составляет около 12 500 при этом его полипептидная цепь содержит 100 или несколько большее число аминокислотных остатков. Бьии установлены аминокислотные последовательности для цитохромов с, выделенных более чем из 60 видов, и во всех исследованных белках 27 положений в полипептидной цепи оказались занятыми одинаковыми аминокислотными остатками (рис. 6-14). Это указывает на то, что все эти остатки играют важную роль в определении биологической активности цитохрома с. В других положениях аминокислотные остатки могут варьировать от вида к виду. Второй важный вывод, сделанный на основе анализа аминокислотных последовательностей цитохромов с, состоит в том, что число остатков, по которым различаются цитохромы с любых двух видов, пропорционально филогенетическому различию между данными видами. Например, молекулы цитохромов с лошади и дрожжей (эволюционно весьма далеких видов) различаются по 48 аминокислотным остаткам, тогда как цитохромы с гораздо более близких видов— курицы и утки-только по двум остаткам. Что же касается цитохромов с курицы и индейки, то они имеют идентичные аминокислотные последовательности. Идентичны также цитохромы с свиньи, коровы и овцы. Сведения о числе различий в аминокислотных последовательностях гомологичных белков из разных видов используют для построения эволюционных карт, отражающих последовательные этапы возникновения и развития различных видов животных и растений в процессе эволюции (рис. 6-14). [c.155]

    Pu . 9.13. Электронная микрофотография митохондриальной ДНК из пивных дрожжей Sa haromy es arlsbergensis. Молекула представляет собой суперспи-рализованное кольцо ДНК с длиной окружности 26 мкм. Она построена примерно из 75 ООО нуклеотидов. В ней закодированы некоторые митохондриальные белки. Прочие необходимые для митохондрий гены находятся в ядерной ДНК. [c.359]

    До сих пор мы говорили в основном о бактериальных системах. Если мы обратимся к клеткам животных, дрожжей, Neu-rospora и т. д. (обычно называемым эукариотическими клетками), то обнаружим, что они содержат два типа белоксинтези-рующих систем митохондриальную и цитоплазматическую. Митохондриальная система — это по существу система прокариотического типа, она весьма сходна с системой бактерий действительно, ферменты митохондрий и ферменты бактерий, по-ви-димому, могут полностью заменять друг друга при функционировании рибосом из обоих источников, кроме того, рибосомы митохондрий и прокариот сходны по размеру. С другой стороны, цитоплазматическая белоксинтезирующая система (которую мы называем эукариотической) отличается рядом особенностей, хотя механизм синтеза белка в этой системе и в системе прокариот в общих чертах сходен рибосомы эукариот крупнее [c.59]

    Все классы генов могут иметь прерывистое строение все гены, кодирующие белки, а также гены, кодирующие рРНК, и гены, кодирующие тРНК. Интроны обнаружены также в митохондриальных генах дрожжей и хлоропластных генах. Прерывистые гены, по-видимому, присутствуют в клетках эукариот всех классов, хотя их содержание варьирует. Например, их доля среди ядерных структурных генов позвоночных может превышать таковую у грибов. [c.253]

    Было обнаружено существование интересного сходства между митохондриальными интронами дрожжей и некоторыми генами рРНК. В их состав входит несколько довольно коротких сходных последовательностей. Они расположены на некотором расстоянии от границ экзон—интрон (на самих границах таких консервативных последовательностей нет). Некоторые последовательности причастны к сплайсингу, по крайней мере, в случае гена box, поскольку они обеспечивают создание сайтов, соответствующих 1/ш -мутациям box 9 и box 2, блокирующим сплайсинг. [c.260]

    По-видимому, все митохондриальные интроны дрожжей имеют такие канонические последовательности. Так, их обнаруживают в интронах, имеющих открытые кодирующие участки, и в других интронах, в которых все возможные рамки считывания заблокированы. К ядерным генам, содержащим канонические последовательности, относится ген Tetrahymena, кодирующий предшественник рРНК, подвергающийся автономному сплайсингу. Эти данные служат замечательной демонстрацией существования неожиданного эволюционного сходства ядерного и внеядерных геномов и позволяют сделать предположение о том, что, возможно, сплайсинг разных РНК протекает в соответствии с общим механизмов. Это заключение наводит на мысль об интересном парадоксе, касающемся механизмов сплайсинга. [c.261]


    Соответствие по крайней мере некоторых экзонов белковым доменам подтверждает предположение о том, что оно имеет фундаментальное значение в эволюции генов. Ясно, что дупликации и слияние экзонов могли играть важную роль в эволюции. Мы не можем проследить за действительными событиями, проишедшими в ходе эволюции каждого гена. Имеется несколько примеров взаимоотношений между экзонами и белковыми доменами, когда отсутствует их простое соответствие, но это можно объяснить тем, что такие события, как слияние экзонов, изменили структуру гена-предка в процессе эволюции ядерных генов. Однако в ряде случаев мы сталкиваемся с большими несоответствиями между структурами генов и белков. Митохондриальные гены дрожжей и млекопитающих кодируют практически идентичные митохондриальные белки, несмотря на существенные различия в организации генов. Геном митохондрий позвоночных очень мал и имеет чрезвычайно компактную организацию нерасщенленных генов (гл. 22), тогда как митохондриальный геном дрожжей имеет большие размеры и включает ряд сложных прерывистых генов. Какая форма гена была исходной  [c.265]

    Геном митохондрий дрожжей существенно больше. Его размер у различных штаммов S. erevisiae варьирует в широких пределах, составляя в среднем около 84 т. п. н. В дрожжевых клетках при стандартном определении обнаруживается около 22 митохондрий на одну клетку, что предполагает наличие примерно 4 копий генома в каждой органелле. В растущих клетках содержание митохондриальной ДНК может достигать 18% всей ДНК клетки. (Митохондриальные геномы других видов дрожжей могут иметь существенно большие размеры.) [c.282]

    Данные о происхождении компонентов, необходимых для экспрессии генов в митохондриях дрожжей, приведены в табл. 22.3. В целом аналогичная картина наблюдается в митохондриях других видов организмов и в хлоропластах. В митохондриях дрожжевых клеток можно выделить восемь мРНК, и они транскрибируются с помощью РНК-полимеразы, которая (предположительно) кодируется ядерными генами. Только мРНК, транскрибируемые с митохондриальных генов, могут транслироваться внутри митохондрии, и, с другой стороны, это единственное место в клетке, где эти мРНК могут экспрессироваться. [c.283]

    В табл. 22.4 приведены комплексы, содержащие белки, синтезированные в митохондриях дрожжей. АТРаза состоит из двух частей мембранного фактора, образуемого двумя или более субъединицами, кодируемых митохондриальным геномом, и растворимой АТРазы F1, состоящей примерно из пяти субъединиц, синтезируемых в цитоплазме. Цитохром-с—оксидаза также состоит из субъединиц, происходящих из обоих источников. В состав комплекса цитохромов Ьс входит один белок митохондриального происхождения, связанный с щестью субъеди- ницами цитоплазматического происхождения. Малая субъединица рибосомы включает в себя один белок (Уаг 1), кодируемый митохондриальными генами. Были получены мутации, позволяющие идентифицировать почти все митохондриальные гены. [c.284]

    Существование генетической рекомбинации в митохондриях дрожжей (см. ниже) позволило создать генетическую карту генома митохондрий, которая была сопоставлена с физической картой при изучении возникающих естественным путем делеций митохондриального генома (называемых петит-мутациями). Участок, занимаемый каждым геном, определяли по положению на карте соответствующей мРНК. [c.285]

    На рис. 22.2 приведена карта митохондриального генома дрожжей, показывающая взаимное расположение генов для основной части РНК и белков (за исключением молекул тРНК, число видов которьа составляет около 22 и гены для которых до сих пор полностью не картированы). Наиболее характерная особенность этой карты — пространственная разделенность локусов. [c.285]

    Отличительная особенность митохондриального генома дрожжей состоит в пространственной разобщенности генов, кодирующих рРНК, что встречается крайне редко. Ген, кодирующий 15S-pPHK, непрерывен и располагается на расстоянии около 25 000 п.н. от гена для 21S-pPHK. В некоторых штаммах дрожжей последний ген имеет один интрон (как показано на карте), в других штаммах он не прерывается. [c.285]

    Весьма значительная часть митохондриального генома дрожжей (около 25%) состоит из коротких (А—Т)-бо-гатых участков ДНК, вероятно не несущих функции кодирования. Однако значительная часть генетического материала все еще не изучена, и будет удивительно, если для оставшихся незаполненными участков карты не будут обнаружены другие гены. Но, даже допуская такую возможность, можно все же считать, что общее число генов в митохондриях дрожжей вряд ли превышает 20. [c.285]

    У дрожжей S. erevisiae рекомбинация между митохондриальными маркерными генами-обычное явление. Природа такой рекомбинации не известна, но кроссинговер между двумя родительскими митохондриальными ДНК, имеющими значительные различия, приводит к появлению потомства, обладающего рекомбинантными ДНК. Этот факт непосредственно свидетельствует о том, что митохондриальные ДНК обеих родительских особей вступают в контакт. [c.287]

    Все петит-мутации нарушают функционирование митохондрий. Они не становятся летальными, поскольку дрожжи могут существовать и в аэробных условиях (когда необходимо дыхание) и в анаэробных (когда без него можно обойтись). Следовательно, мутации митохондриального генома являются условно-летальными, вызывающими гибель дрожжей лишь в аэробных условиях в анаэробных же условиях они выживают. Таким образом, нарушение функций митохондрий приводит к переходу на анаэробный способ существования. Несомненно, такой переход невозможен в случае, например, клеток животных, для которых прекращение функционирования митохондрий оказывается летальным. (Аналогичная генетическая ситуация наблюдается в случае хлоропластов С. reinhardii, которые не нуждаются в фотосинтезе в присутствии ацетата.) [c.288]


Смотреть страницы где упоминается термин Митохондриальная ДНК дрожжей: [c.136]    [c.166]    [c.270]    [c.270]    [c.212]    [c.166]    [c.107]    [c.186]    [c.222]    [c.226]    [c.200]    [c.352]    [c.387]    [c.234]    [c.48]    [c.221]    [c.8]    [c.284]    [c.285]    [c.288]   
Биохимия Том 3 (1980) -- [ c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Дрожжи



© 2025 chem21.info Реклама на сайте