Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аспарагиновая кислота оптическое вращение

    Первой аминокислотой, выделенной из белков в оптически активном виде, была аспарагиновая кислота, оптическое вращение которой было определено Пастером . Вслед за этим из белков была выделена оптически активная глутаминовая кислота , лейцин и цистеин , фенилаланин . Условием выделения оптически активных аминокислот является проведение гидролиза в кислой среде, в то время как при щелочном гидролизе в результате рацемизации образуются оптически неактивные аминокислоты. [c.587]


    Вскоре, однако, выяснилось, что знак вращения — признак неустойчивый. Существуют вещества, меняющие знак вращения в зависимости от условий (растворитель, температура, концентрация), в которых проводится поляриметрическое определение. Так, например, водный раствор природной яблочной кислоты при концентрации 70—50 % имеет правое вращение, при концентрации ниже 25 % — левое. Раствор природной аспарагиновой кислоты в воде при комнатной температуре вращает вправо, а выше 75 "С приобретает левое вращение. Таким образом, конфигурация непосредственно не связана со знаком вращения, последний — только признак единственный в случае пары оптических антиподов, один из признаков при сопоставлении пары диастереомеров ), позволяющий отличить друг от друга пространственные изомеры. Когда это стало ясным, появилась потребность обозначать не просто знак вращения, а конфигурацию оптически активных веществ, т. е. отражать в названии особенности пространственного строения молекулы данного стереоизомера, отличающего именно этот стереоизомер от других. Потребность эта появилась, однако, в то время, когда еще не умели определять абсолютную конфигурацию. [c.295]

    По данным, приведенным в табл. 11, легко видеть, что в ряду производных (—)-яблочной кислоты постепенно увеличивается левое вращение, а в ряду тех же производных (4-)-аспарагиновой кислоты сначала уменьшается правое вращение и затем возрастает левое, т. е. сдвиг оптического вращения обоих рядов производных аналогичен (сдвиг влево). На этом основании можно сделать вывод, что конфигурация молекулы (- -)-аспарагиновой кислоты та же, что и (—)-яблочной кислоты  [c.255]

    Необходимо отметить, что в случае аминокислот символы Ь п О приняты для обозначения конфигурации а-углеродного атома и их ни в коем случае нельзя идентифицировать со знаком оптического вращения (для указания последнего используются символы + и —) . Например, -аминокислоты, такие, как цистеин, лейцин, фенилаланин, пролин, серий, в нейтральных водных растворах являются левовращающими (—) напротив, аланин, аргинин, аспарагиновая и глутаминовая кислоты — правовращающие (- -), хотя также принадлежат к -ряду. На знак оптического вращения большое влияние оказывает среда, в которой производится определение. Так, -серин в нейтральной среде является левовращающим, а в кислой — правовращающим. [c.31]

    Группой исследователей, работающих в Бетесда [135], недавно установлено, что для глутаминовой и аспарагиновой кислот и их амидов справедливы общие закономерности, выявленные в работах Пфейфера и Кристелейта. Если рассчитать, какая часть дисперсии оптического вращения приходится на долю а-центров медных комплексов аминокислот с двумя асимметрическими центрами (треонин, пролин и др.). то окажется, что эти кислоты также подчиняются указанным выше правилам. [c.338]


    Конфигурационное родство этой аминокислоты с (—)-цистеином и (—)-серином было уже давно определено (Э. Фишер, 1907 г.) нри помощи химических превращений [исходя из (—)-серина], в результате которых не происходит замещения при асимметрическом атоме углерода. Таким образом, все эти аминокислоты относятся к ряду L. Химическими методами было также установлено конфигурационное родство между (—)-серином и другими аминокислотами, полученными из белков (П. Каррер, 1930 г.), как это можно увидеть из приведенной ниже схемы. Установлено также аналогичное конфигурационное родство между L-(—)-аспарагиновой кислотой и следующими природными аминокислотами (—)-лейцином, (4-)-валином, (—)-метионином, (—)-треонином, (-1-)-орпитином, (-f)-лизипом, (—)-пролином и (- -)-глутаминовой кислотой. При помощи подобных методов пришли к заключению, что большинство природных аминокислот имеет ту же конфигурацию, что L-серин и L-аланин, и что, по всей вероятности, это заключение справедливо и для тех немногих а-аминокислот, выделенных из белков, конфигурация которых еще не определена химическим путем (а только оптическим сравнением, например на основании правила Клафа, согласно которому оптическое вращение аминокислот ряда L смещается вправо при добавлении минеральной кислоты). [c.384]

    Аминокислоты, конфигурация. Характерной особенностью приходных аминокислот является наличие в их молекуле асимметрического центра, эти аминокислоты могут существовать в двух оптически активных формах (Ь и О). В состав белков входят Ь-аминокислоты. Символы Ь и О применяют для обозначения конфигурации а-атома углерода. Для указания направления оптического вращения плоскости используют знаки (+) — правовращающий и (—) — левовращающий. Ряд а-а шно-кислот (гистидин, лейцин, метионин, цистеин, треонин, фенилаланин, тирозин, пролин, триптофан, оксипролин, серин) в нейтральных водных растворах — левовращающие. В то же время среди а-аминокислот есть и правовращающие (алавив, валин, изолейцин, аспарагиновая кислота, глутаминовая кислота, аргинин, лизин). [c.8]

    В начале нашего столетия Эрлих описал биохимическое расщепление серии аминокислот. Оказалось, что дрожжи в процессе брожения перерабатывают преилпществснно ь-ф< р-мы аминокислот, а их оптические антиподы накапливаются. Таким путем могут быть выделены с выходом 60—/0% оптически чистые D-изомеры аланина, лейцина, валина, изолейцина, изо-валина, серина, фенилаланина, глутаминовой кислоты, гистидина. Однако подобным биохимическим методом удается расщепить не все аминокислоты. Фенилглицин получается лишь с небольшим вращением, а рацематы аспарагиновой кислоты, пролина и тирозина совсем не расщепляются действием бродящих дрожжей. [c.574]

    Блоу [34] недавно предложил классифицировать полипептиды на три группы. Группа I, в которую входят полипептиды со стандартными оптическими свойствами, характеризуется тем, что к Р-углеродному атому остатка аминокислоты присоединен оптически неактивный радикал насыщенного углеводорода. Все остальные полипептиды делятся на две группы. В группу II входят полипептиды, у которых заместителем у Р-углеродного атома является любая другая группа, кроме — СНг—, например тирозин и аспарагиновая кислота. Пролин и оксипролин принадлежат к группе III, которую можно рассматривать как подгруппу группы II. Полипептиды, принадлежащие к последним двум группам, имеют необычные оптические свойства. Это рабочее правило в дальнейшем нашло поддержку в исследованиях Шеллмана, который подробно изучал влияние р-заместителей на оптическое вращение отдельных аминокислот [60]. Карлсон и др. [53] показали также, что спираль полипептидов, принадлежащих к группе I, более устойчива, чем спираль полипептидов группы II. В сополимере, таком, как, например, сополимер Ь-глутамата и Г-аспартата, именно те аминокислотные остатки оказывают доминирующее влияние на направление закручивания спирали, которые имеют стандартные оптические свойства. Этот факт является решающим для определения спираль-ности белков методом ДОВ (раздел Г-4). Исключительное поведение полипептидов групп II и III фактически подтверждает то, что величина Ьо, равная приблизительно — 630 (Яо = 212 мц), является непосредственно мерой стандартной правой спирали. [c.107]

    Недавно конформационные исследования олигомеров были проведены для солей Р-метил-Ь-аспарагиновой кислоты. Синтез таких соединений (п = 2—14) описан Гудманом и Бордманом [20], которые провелп исследования их удельного оптического вращения в диметилформамиде, дихлоруксусной кислоте и хлороформе [21]. В первых двух растворителях эти олигомеры существуют в форме статистического клубка, однако в хлороформе спиральная форма становится стабильной для олигомеров с = 11 и 14. Эти пептиды необычны, так как их Ь-аминокислотные остатки образуют левые спирали [22, 23], в то время как большинство исследованных полиаминокислот кристаллизуются в виде правых спиралей [24]. [c.609]


Смотреть страницы где упоминается термин Аспарагиновая кислота оптическое вращение: [c.265]    [c.265]    [c.282]    [c.135]   
Основы стереохимии (1964) -- [ c.259 , c.489 ]




ПОИСК





Смотрите так же термины и статьи:

Аспарагиновая

Аспарагиновая кислота

Оптическое вращение кислот



© 2024 chem21.info Реклама на сайте