Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты активность оптическая

    Большинство кристаллизационных методов включает получение диастереомерных солей, обычно из Л -ацил-01-аминокислот и оптически активных оснований. Синтетическую смесь энантиомеров обрабатывают оптически активным основанием, таким как бруцин, стрихнин или 1-фенилэтиламин, в растворителе и концентрируют до тех пор, пока одна из диастереомерных солей не начнет выкристаллизовываться из смеси. При необходимости продукт можно перекристаллизовать до необходимой оптической чистоты. Более растворимый диастереомер можно концентрировать в растворе. Выделенные соли необходимо далее разложить до аминокислот. Продукт можно использовать непосредственно в синтезе, если ацильная группа подобрана соответствующим образом. Например, Л/-бензилоксикарбонил-01-аминокислоты во многих случаях можно разделить с помощью природного (—)-эфедрина." Когда нет р-метильной группы в боковом радикале, выпадает соль О-изомера когда такая группа присутствует, из раствора выпадает преимущественно -изомер (исключением является фенилаланин) [46]. Однако несмотря на множество имеющихся методов разделения, нет универсального метода, и нельзя разделить тирозин, триптофан или глутаминовую кислоту. Методы, основанные на кристаллизации, разумеется, сильно зависят от природы аминокислоты— в каждом конкретном случае требуется подбор условий. [c.244]


    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    В результате реакции дипептида Met-Gly с пероксидом водорода образуются два соединения в неравных количествах. После расщепления пептидной связи в смеси обнаруживаются три вещества, одним из которых является Gly. Две другие аминокислоты обладают оптической активностью, но отличаются [c.394]

    Расщепление аминокислот на оптически активные компоненты. 988 [c.15]

    Относительные времена удерживания энантиомеров изопропиловых эфиров производных аминокислот на оптически активных НЖФ [c.67]

    Еще одна область современного исследования - асимметрический катализ - связана с гомогенным гидрированием непредельных аминокислот в оптически активные аминокислоты с помощью хираль- [c.89]

    Этот пример является одним из вариантов расщепления с использованием соединительного звена , роль которого исполняет здесь остаток —СНз—СО—. Прн этом образуется диастереомер из аминокислоты и оптически активного спирта. Таким способом расщеплены аланин, валин и фенилглицин. Однако расщепить таким путем фенилаланин не удалось. [c.400]

    В полученном дипептиде свободная электронная пара азота сопряжена с двойной связью карбонильной группы, так что связь С—N отчасти сдвоена и вращение вокруг нее затруднено. Пептидная связь имеет постоянный дипольный момент D. Боковые группы R, и R2 определяют комбинацию физико-химических свойств, присущих исходным индивидуальным аминокислотам. Как известно, при всех превращениях, если не происходит разрыва связи у асимметричного атома, конфигурация молекулы сохраняется. Поэтому при образовании пептидной связи сохраняются основные свойства исходных аминокислот 1) оптическая активность, обусловленная хиральностью строения аминокислотных остатков  [c.28]


    Синтетические аминокислоты представляют собой рацемические смеси. Для разделения рацематов могут быть использованы классические методы, например образование диастереомерных солей эфиров аминокислот с оптически активными кислотами. Разделение рацематов природных аминокислот часто осуществляется ферментативными методами, что может быть иллюстрировано следующим примером (Грин-штейн). При взаимодействии Ы-ацетил-О, -фенилаланина с толуиди-ном в присутствии протеолитического фермента папаина (из растений папа1 я — дьпшого дерева) при 37° и pH = 6,5 образуется только толуи-дид -формы, который количественно выпадает в осадок, тогда как Ы-ацетил-Ь-фенилаланин остается в растворе  [c.360]

    Во всех упомянутых выше синтезах из аминокислот получали оптически активные азотсодержащие соединения. Однако аминокислоты служат удобными исходными веществами и для синтеза соединений других типов. Так, глутаминовую кислоту используют для синтеза ряда феромонов [19], например сулкатола (схема 10). [c.46]

    Белки подразделяют на дре большие группы простые и сложные. Простые белки гидролизуются кислотами или щелочами. В среднем в их состав входят 50 % С, 7 % Н, 23 % О, 16 % N и 3 % 8. Все природные аминокислоты оптически активны (кроме глицина) и принадлежат, за редким исключением, к Ь-ряду. [c.272]

    Из указанных амиловых спиртов четвертый и седьмой, оптически активный и оптически неактивный амиловые спирты брожения, всегда содержатся в образующихся при спиртовом брожении сивушных маслах и являются их главной составной частью особенно много в сивушных маслах оптически неактивного амилового спирта брожения. Источником образования этих спиртов являются не сахара, а аминокислоты белков, расщепляющиеся в результате, особого рода брожения (Эрлих). Неактивный амиловый спирт брожения получается из лейцина, а активный — из изолейцина (о механизме этих процессов брожения аминокислот см, в главе об аминокислотах)  [c.128]

    Аминокислоты расщепляются некоторыми грибами, в том числе дрожжами (Эрлих). Как мы уже видели ранее, в ходе спиртового брожения образуются различные высшие спирты (амиловые и бутиловые). Онн обязаны своим возникновением аминокислотному брожению неактивный амиловый спирт брожения получается из лейцина, оптически активный — из изолейцина, изобутиловый — из валина  [c.355]

    Белки состоят в основном из /.-аминокислот, характеризующихся определенными значениями [а]в. Полипептиды, полученные из -аминокислот, обладают оптической активностью и в форме статистического клубка. Однако основной вклад в оптическую активность белка дает специфическая спиральная упаковка плоских амидных групп —ЫН—СНК—СО— (звездочка отмечает асимметрический атом углерода, К — боковая группа, специфичная для каждой аминокислоты). В настоящее время наиболее щироко известны две упорядоченные структуры белков а-спираль и р-склад-чатая структура. Переходы амидной группы л->л и /г—>-я вносят различные вклады в оптическую активность полипептидных цепей, находящихся в различных конформациях соответственно спектры ДОВ и КД полипептидов в различных конформациях отличаются друг от друга. На рис. 24 приведены спектры ДОВ и КД модельных полипептидов в конформациях статистического клубка, [c.45]

    Разнообразные асимметрические синтезы данного типа многократно использовались для получения оптически активных аминокислот. Высокого оптического выхода удалось добиться при проведении таких синтезов с помощью диастереомерных металлкарбонилиминных комплексов [137]. Реакция (—)-а-фенилэтиламина с этиловым эфиром глиоксиловой кислоты и Ре2(С0)э дает два диастереомерных комплекса ЬУИ [c.146]

    Белки состоят в основном из L-аминокислот, характеризующихся определенными значениями [а]с. Полипептиды, полученные из -аминокислот, обладают оптической активностью и в форме статистического клубка. Однако основной вклад в оптическую активность белка дает специфическая спиральная упаковка плоских амидных групп —NH— HR—СО— (звездочка отмечает асимметрический атом углерода, R —боковая группа, специфичная для каждой аминокислоты). В настоящее время наиболее широко известны две упорядоченные структуры белков а-спираль и р-склад-чатая структура. Переходы амидной группы и п- л вносят [c.45]

    Аминокислота аланин имеет формулу НгЫСН(СНз)С02Н. Нарисуйте модель молекулы. Является ли аланин оптически активным соединением Замените группу —СНз на атом водорода. Будет ли получившаяся аминокислота (глицин) оптически активной  [c.568]

    В качестве хиральных реагентов для получения пригодных для хроматографии диастереомерных производных аминокислот используют оптически активные амиловый спирт как компонент этерификации для N-пентафтор-пропиониламинокислот [178] и а-хлоризовалерилхлорид как аш1лирующий компонент для эфиров аминокислот [179]. Применение продажных стеклянных капилляров с готовой неподвижной фазой обеспечивает оптимальное разделение большинства аминокислот. [c.64]


    Структуры всех 20 нормальных аминокислот (компонентов, выделенных из гидролизатов белков) были установлены к 1935 г. самым первым Браконно в 1820 г. был охарактеризован глицин, самым последним — треонин. Хотя цистеин входит в состав многих пептидов и белков как таковой, Однако их функционирующие формы содержат окисленный продукт — цистин, дисульфидные мостики которого могут образовываться как внутри-, так и межмолекулярно. За исключением глицина, все кодируемые аминокислоты белков оптически активны и одинаково хиральны при асимметрическом ос-углеродном атоме. По аналогии, с обычной номенклатурой для углеводов, их обычно рассматривают как соединения, обладающие -конфигурацией, при этом -серин считают родоначальным соединением. За исключением цистеина, конфигурация всех аминокислот соответствует S-конфигурацни по системе Кана-Ингольда-Прелога положение серы в цистеине таково, что -цистеин имеет / -конфигурацию. Изолепцин и треонин имеют по второму центру асимметрии при -углеродных атомах найденные в белках (2S, 35)-2-амино-3-метилвалериановая и (2S, 3/ )-2-амино-3-гидроксимасляная кислоты являются стереоизомерами. [c.227]

    Очень эффективным оказался путь синтеза оптически ак- ых а-аминокислот через медьорганические комплексы Белоконь, 1982) Сначала опгически активный К-бензил- л превращают в амид реакцией с орто-аминоацетофено-Затем полученный продукт конденсируют с глицином (ами-жусной кислотой) в присутствии солей меди (II) и в резуль- получают медный комплекс ЫХ, в котором СНг-группа (на ле выделена) обладает подвижным водородом При альдоль-[ конденсации с участием этой группы получают а-амино-р-оксикислоты, а при алкилировании этой группы — разно-1е аминокислоты высокой оптической чистоты [c.81]

    Фишер [513] впервые применил принцип диастереоизомерии для разделения аминокислот к N-ацилпроизводному рацемической аминокислоты добавляли оптически активный алкалоид (бруцин, стрихнин, цинхонин, хинидин, хинин), в результате чего возникали две диастереоизомерные формы солей, обладаю-, щпе различной растворимостью. После разделения этих диастереоизомеров алкалоид регенерировали и ацильную группу [c.92]

    Следует учитывать и другой фактор, присущий исключительно биологическим системам,— оптическую чистоту. Белки состоят из L-аминокислот. Поэтому при химическом синтезе следует исходить из L-аминокислот, а в процессе синтеза рацемизация должна быть сведена к минимуму. В наибольшей степени это относится к синтезу ферментов, каталитическая активность которых зависит от оптической чистоты. Аминокислоты особенно легко подвергаются рацемизации, когда они ацилированы (т. е. когда аминогруппа блокирована ацильной группировкой) через промежуточное образование азлактона. Такое превращение может произойти, например, в процессе введения защитной группы или в процессе образования пептидной связи  [c.68]

    При использовании ферментов возможны различные пути. Обычно они основаны на том, что в живых организмах ферментативные системы реагируют с тем энантиомером, который встречается в природе. Например, Пастер обнаружил, что грибок плесени Peni illium glau um разрушает природную (-f)-винную кислоту, а не (—)-энантиомер, не встречающийся в природе. Если в синтетическую ( )-винную кислоту внести эту плесень, то разрушаются молекулы ( + )-кислоты и в растворе остаются молекулы (—)-кислоты таким путем из ферментированной смеси получают чистую —)-кислоту. Причина, по которой хиральный фермент реагирует только с одним из двух энантиомерных субстратов, была объяснена выше. В другом случае вместо разрушения одни из двух энантиомеров подвергается химическому превращению. Например, при расщеплении синтетических а-аминокислот на оптически активные аминокислоты (из которых построены все природные белки) рацемическую кислоту сначала ацилируют и получают рацемическую ациламинокислоту. Последнюю затем гидролизуют в присутствии фермента ацилазы, получаемого из почки свиньи. Ферментативный гидролиз затрагивает только ацетильные производные природных (обычно S) аминокислот эти аминокислоты получаются таким образом в свободном состоянии и легко отделяются от оставшихся ацетильных производных R-аминокислот. Свободные R-аминокислоты можно получить гидролизом оставшихся R-ацетиламино-кислот обычными химическими методами (например, в присутствии соляной кислоты). [c.31]

    Интересно отметить, что каталитическая система А1С1з — оптически активная аминокислота, дает оптически неактивный продукт, тогда как система 2п(СгН5)2— -аминокислота из- [c.156]

    Интерес к асимметрической гидрогенизации особенно возрос в связи с поиском новых методов синтеза оптически активных а-аминокислот. В основе асимметрической гидрогенизации лежит цис-присоединение водорода со стороны поверхности катализатора. Эти представления находятся в соответствии с мультиплетной теорией А. А. Баландина. При этом промежуточные по-лугидрированные формы не десорбируются в объем с поверхности катализатора и непосредственный акт гидрирования происходит в минимальном объеме реакционной [c.82]

    Аминокислоты, полученные в экспериментах Миллера, представляли собой рацематы. Более того, только рацемические аминокислоты были обнаружены в Мерчисонском метеорите, упавшем в Австралии в 1969 г. Каким образом сложные молекулы приобрели оптическую активность Существует несколько различных гипотез по этому поводу. Акабори [46] предложил следующие превращения при синтезе сложных полипептидов, которые были подтверждены экспериментально  [c.185]

    Очень эффективный путь асимметрического синтеза аминокислот разработал Ю. Н. Белоконь [90] (схемы 51, 52). Вспомогательным оптически активным веществом здесь служит Л -бензилпролин (122), который превращают в амид (123) реакцией с о-аминоацетофеноном, а затем получают медный комплекс (124) при участии простейшей (ахираль-ной) аминокислоты — глицина. Метиленовая группа глицинового остатка в комплексе (124) способна играть роль метиленовой компоненты в альдольной конденсации при реакции с ацетальдегидом (см. схему 52) возникает смесь треонина и аллотреонина с оптической чистотой 97— 100%. Можно проводить и реакции алкилирования по этой СНг-группе, что дает разнообразные аминокислоты высокой оптической чистоты. [c.82]

    Он опубликовал - в 1899 г. работу, посвященную расщеплению-аланина, аспарагиновой и глутаминовой кислот. Для этого Фишер перевел названные аминокислоты в их 5-бензоильные производные действием хлористого бензоила в присутствии бикарбоната натрия. Расщепив их затем на антиподы через диастереомерные соли со стрихнином и бруцином, Фишер путем гидролиза оптически активных бензоильных производных соляной кислотой получил свободные аминокислоты в оптически активной форме. Позднее Фишер описад аналогичное расщепление бензоильных производных тирозина, лерщина, фенилаланина, а-аминомасляной кислоты. [c.397]

    АКТИВНОСТЬ ОПТИЧЕСКАЯ — отклонение (вращение) плоскости поляризованного света при прохождении его через в-во, находящееся в жидком, газообразном или твердом состоянии (кристалл) или в растворе. А. о. является следствием асимметрич. строения в-ва — иона, молекулы или кристалла и связана с существованием антиподов (см. Антиподы оптические. Асимметрическая молекула). Способностью вращать плоскость поляризованного света обладают многие природные и синтетич. соединения. К их числу относятся аминокислоты, алкалоиды, сахара, антибиотики, витамины и др. соединения. Для получения оптически активных в-в используют расщепление на антиподы оптически недеятельных соединений, а также оптически активные природные или синтетич. в-ва, к-рые при помощи стереоснеци-фич, реакций превращаются в новые оптически активные в-ва. Определение вращения плоскости поляризованного света производится при помощи поляриметра. Метод, с помощью к-рого исследуют влияние физич. факторов (длины волны поляризованного света, строения и агрегатного состояния в-ва или его концентрации, темп-ры и др.) на величину вращения плоскости поляризации, наз. поляриметрией. [c.47]

    Как показали Баленович и сотр. [134], при восстановлении хлорангидридов а-фтальимидокарбоновых кислот, полученных из природных аминокислот, образуются оптически активные альдегиды. [c.505]

    Для энантиоселективного синтеза сложных эфиров использовали оптически активные полиамины (полученные из производных аминокислот). Продукты имели очень низкую оптическую чистоту [1722]. Еще в одной группе опытов была поставлена цель получить сложные эфиры DL-2-фенилмасляной и DL-миндальной кислот при использовании серии хиральных катализаторов с асимметрическим углеродным скелетом с гидроксильными группами и без них. Только в присутствии бромида (li ) - (4 -изопропил)-(1г-метил)-(Зс-триэтиламмоний)циклогек-еа а был достигнут небольшой оптический выход [843, 949]. Оксим сополимера 4-винилпиридина и (5)-5-метилгептен-1-она-3 показал очень умеренное хиральное различие при гидролизе эфира (ОЕ)-/г-нитрофенил-3-метилпентановой кислоты [1723]. [c.107]

    Другой элегантный и полезный современный метод синтеза оптически активных аминокислот заключается в гомогенном каталитическом гидрировании с использованием в качестве катализатора комплексов родия(1). Действительно, открытие факта, что комплекс [НЬ (РЬзР)зС1] (катализатор Уилкинсона) и родственные соединения являются эффективными гомогенными катализаторами при гидрировании многих олефинов, дало в руки исследователей систему, которая могла бы быть использована при асимметрическом каталитическом синтезе. [c.96]

    Относительно конфигурации оптически активных а-хлоркарбоно-вых кислот в настоящее время нам известно, что левовращающие формы а-хлорпропионовой, монохлорянтарной и дихлорянтарной кислот конфигуративно соответствуют природной L(—)-яблочной кислоте, а также природным аминокислотам белка (стр. 369) и, следовательно, содержат группировку  [c.314]

    Обычно каталитическое гидрирование проводят при температуре 25°С и давлении водорода 1—2,5 атм, причем отношение количеств олефина и родия равно 50. В этих условиях а-М-ацил-аминоакриловые кислоты превращаются в спирте в производные аминокислот. Оптический выход сравним с оптическим выходом при использовании гомогенного катализатора. При этом наблюдается образование продуктов с той же абсолютной конфигурацией (Н). Основное преимущество — возможность многократного использования нерастворимого катализатора. Его можно регенерировать из реакционной смеси фильтрацией в инертной атмосфере, при этом не теряется каталитическая активность, а также не снижается оптическая чистота продуктов гидрирования. [c.102]

    Поскольку в молекуле а-аминокислот имеется асимметрический атом углерода, многае аминокисло1Ы оптически активны. В природе чаще встречаются левовращающие Ь-изомеры, а в белках содержатся только L-aминoки JЮTЫ. [c.240]

    В последнее время в рядах аналогично построенных оптически активных вешеств с выясненным пространственным строением (например, в случае а-аминокислот и а-окснкислот) стало обычным обозначать соединения, независимо от их действительного знака вращения, как й и /-, по их принадлежности к тому или другому сте-рическому ряду, В этих случаях истинное направление оптического вращения вещества обозначается знаком, (-Ь) или (—), который помещают за буквами / или й. Так, например, все а-оксикислоты с одинаковым пространственным расположением ОН-группы называют /, а их антиподы — -оксикислотами /-молочная кислота СН3СНОНСООН вращает плоскость поляризованного света вправо и называется поэтому /(-1-)-молоч-ной кислотой, а ее антипод — й(—)-молочной кислотой. [c.138]

    Выведите все изомеры аминокислот состава С4Н902М (их пять). Назовите их, обозначая положение аминогрупп греческими буквами. Какие из них обладают оптической активностью Обозначьте звездочкой асимметрический атом углерода. [c.78]


Смотреть страницы где упоминается термин Аминокислоты активность оптическая: [c.248]    [c.691]    [c.426]    [c.312]    [c.47]    [c.92]    [c.61]    [c.131]    [c.95]    [c.83]    [c.331]    [c.22]   
Биологическая химия Изд.3 (1998) -- [ c.39 ]

Биохимия (2004) -- [ c.17 , c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Активность аминокислот

Аминокислоты конфигурация и оптическая активность

Аминокислоты оптически активные

Аминокислоты оптически активные

Оптическая активность

Оптическая активность также Рацематы аминокислот

Прививка оптически активных аминокислот

Пространственная изомерия и оптическая активность а-аминокислот

Сложные эфиры восстановление оптически активных эфиров аминокислот

активное оптически активное



© 2025 chem21.info Реклама на сайте