Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптический сдвиг

    Аналогичные соединения одинаковой конфигурации испытывают сходные изменения оптического вращения, если в них проводятся одинаковые химические изменения (так называемое правило оптического сдвига). [c.206]

    Расчеты связи химического сдвига с параметрами электронного строения проводили также в работах [324]. Интересно также предложение об исследовании возбужденных состояний методом ГРС посредством оптической накачки ( оптический сдвиг ) [325]. [c.180]


    Оптическая ось кристаллов 862 Оптическая плотность 283 Оптически-активные соединения 155, 156 Оптические антиподы 155 Оптические свойства кристаллов 862 Оптического сдвига правило 892 Орбитальный момент 1015 Органические реактивы 408 Органические соединения, влияние конформации на физико-химич. свойства О. с. 703 [c.538]

    Если для определения пространственной конфигурации различных соединений нельзя применить прямые химические методы, то сравнивают физические свойства. Эти методы (оптическая суперпозиция, оптический сдвиг, определение констант диссоциации кислот и др.) подробно не рассматриваются. [c.100]

    Коль скоро абсолютная конфигурация некоторых дифенилов установлена вышеприведенными методами, конфигурация других дифенилов может быть определена обсужденными в разд. 5-4 корреляционными методами. Успешно применялись четыре метода метод химической трансформации [74] (без затрагивания диссимметрической группировки либо с затрагиванием заранее известным способом, см. ниже), метод квазирацематов [75], измененное правило оптического сдвига Фрейденберга [66, 76] и дисперсия оптического вращения (ср. гл. 14) [77]. [c.169]

    Другим интересным применением метода является использование оптически активных СР для определения оптической чистоты. Идея аналогична той, которая обсуждалась в гл. 8, где описывалось применение оптически активных растворителей. В данном случае образование различных диастереоизомерных аддуктов характеризуется различными константами устойчивости, что дает для энантиомерных оснований различные сдвиги, усредненные по мольным долям. В работах [61—63] сообщается об использовании для этой цели различных оптически активных комплексов редкоземельных металлов. [c.198]

    Соблюдение постоянной температуры в течение опыта. Для получения точных значений о необходимо, чтобы колебания температуры не превышали 0,0 Г С. Для того чтобы неровности стекла термостата не вызвали сдвига изображения мениска или плоской поверхности, в термостат должно быть вмонтировано оптическое стекло, через которое производят наблюдение капиллярного поднятия. [c.102]

    Не следует думать, что влияние целостной системы сказывается лишь на физических свойствах, разлагаемых по аддитивной схеме. В первой группе физических-свойств, непосредственно отражающей структурные особенности молекулы, такое воздействие также может быть. Оно выражается в сдвигах характеристических частот в ИК- или УФ-спектрах под влиянием различных заместителей, в расщеплении полос поглощения в спектрах ЭПР или ЯМР, в неприменимости аддитивного расчета оптической активности для соединений, содержащих несколько смежных асимметричных центров. В то же время, раз обнаруженные, сами эти отклонения, сдвиги, расщепления оказываются существенными для определения структурных особенностей молекул. [c.24]


    Помимо постоянного / -эффекта в молекуле в ходе реакции может возникнуть дополнительное смещение электронов в результате изменения окружающей среды — динамический индукционный Или индуктомерный эффект / . Этот эффект отражает поляризуемость молекулы. Для понимания процесса химического превращения необходимо знать, с какой легкостью изменяется распределение электронов в молекуле. Поляризуемость электронов в молекуле проявляется в оптических свойствах и обусловливает молекулярную рефракцию вещества. Суммарное значение поляризуемости для молекулы не отражает того факта, что в действительности она пространственно анизотропна это имеет важное значение при объяснении протекания реакций, поскольку в химических процессах наиболее существенны сдвиги электронов, совершающиеся вдоль линий связи. Значение оптической поляризуемости по осям координат для молекулы хлорбензола показано на схеме [c.66]

    Симбатный сдвиг оптического вращения при одинаковых изменениях условий среды (растворитель, температура) также свидетельствует в пользу тождества конфигураций у сравниваемых соединений. [c.110]

    Небольшие изменения температуры не влияют на оптическую плотность. Исключение составляют случаи, когда в растворе присутствуют вещества, находящиеся в равновесии друг с другом. Тогда даже незначительные изменения температуры могут вызывать сдвиг равновесия, что приводит к изменению концентраций поглощающих веществ и, как следствие, к изменению оптической плотности раствора. Это обстоятельство необходимо иметь в виду [c.649]

    Определение состава и констант устойчивости. Определение состава комплекса титана с тайроном проводится по методу сдвига равновесия (см. стр. 104). Для этого в десять мерных колб емкостью 50 мл вводят 2 мл раствора титана, последовательно 1 1,2 1,5 1,7 2,0 3,0 4,0 5,6 7,0 8,0 мл раствора тайрона и 10 мл ацетатного буферного раствора с оптимальным значением pH, доводят объем раствора до метки водой, оставляют стоять 5 мин. Измеряют оптические плотности растворов на фотоэлектроколориметре ФЭК-60 при соответствующей максимальному поглощению комплекса (/ = 1см) по отношению к воде. [c.118]

    В классической стереохимии наиболее важными были разделы, связанные с зеркальной (оптической) изомерией. Это отразилось и на содержании книги Основы стереохимии , в которой много места уделено оптически активным веществам. В настоящее время центр тяжести стереохимии явно сместился в область исследования современными физическими методами тонких деталей пространственного строения молекул (конформационные проблемы), а также изучения влияния пространственного строения на реакционную способность (динамическая стереохимия). С развитием спектрополяриметрического метода исследования совершенно иной характер приобрели и разделы, относящиеся к оптической активности. Все эти сдвиги нашли отражение в построении и содержании новой книги. [c.11]

    Различают асимметрические превращения первого рода, при которых сдвиг равновесия в сторону одного из антиподов наблюдается в растворе и асимметрические превращения второго рода, при которых один из антиподов выпадает из раствора, и, таким образом, может произойти полное превращение рацемата в одну из оптически активных форм. [c.118]

    Один из давних примеров подобного активирования рацемата наблюдал в 1905 г. Марквальд при длительном нагревании рацемической миндальной кислоты с бруцином была получена миндальная кислота, обладавшая небольшим оптическим вращением. Другой пример описал в начале 20-х годов Лейхс. Из бруциновой соли кислоты ХЫ при медленном подкислении была выделена свободная кислота целиком в виде ( + )-формы, что является результатом сдвига равновесия в рацемате под действием бруцина  [c.118]

    Другой вариант использования метода ЯМР для определения оптической чистоты основан на использовании оптически активных растворителей в них различные химические сдвиги дают и энантиотопные атомы, имеющиеся в оптических антиподах [167]. Этим методом была определена оптическая чистота 2,2,2-трифтор-1-фенилэтанола с использованием (+)-а-фенилэтиламина в качестве растворителя, оптическая чистота аминов и метиловых эфиров а-аминокислот с использованием в качестве растворителя (—)-2,2,2-трифтор-Ь [c.164]

    На основании общего правила, что соединения с одинаковой конфигурацией обнаруживают одинаковые изменения вращения при одинаковых воздействиях, был создан и ряд более конкретных правил, касающихся отдельных групп соединений. Одно из этих правил относится к аминокислотам и оно гласит, что оптическое вращение всех природных аминокислот ( -ряда) в кислых растворах сдвигается вправо. Напомним еще раз это правило не следует понимать так, что обязательно происходит рост правого вращения сдвиг вправо может означать и уменьшение левого вращения. Данные о вращениях некоторых -аминокислот в нейтральных и кислых растворах приведены ниже  [c.211]


    При исследовании оптически активных амидов типа бен-зоил-а-фенилэтиламина было обнаружено сильное влияние растворителя на ход кривых ДОВ в ближней УФ-области [60]. Подробное исследование эффекта растворителя позволило высказать предположение о связи этих изменений кривых ДОВ со сдвигом мезомерии в сторону одной из граничных форм [61]  [c.588]

    Часто вицинальное правило формулируют иначе изменения анизотропии полосы поглощения (т. е. изменения ее вклада во вращение) тем значительнее, чем в большей близости к соответствующему хромофору производится химич. изменение. В этой форме вицинальное правило более конкретно и легче применимо к экспериментальному материалу, однако при атом вицинальное правило превращается в правило положения вводимого заместителя (правило удаления), сформулированное Чугаевым задолго до работ Куна и Фрейденберга. Последним принадлежит заслуга теоретич. истолкования рассматриваемой закономерности и широкого применения ее при сравнении относительной конфигурации оптически активных в-в в виде правила оптического сдвига. Согласно последнему разница во вращении аналогично построенных производных для конфигуративпо сходных соединений одинакова по знаку и близка по величине. Правило удаления можно иллюстрировать след, рядом соединений, в к-рых видно ослабление влияния карбо-цильной группы на вращение по мере роста расстоя-Ьия между карбонильной группой и асимметрич. [c.446]

    Большое число работ убедительно демонстрирует отличие свойств жидкости, находящейся вблизи поверхности, от свойств в ее объеме [14, 36, 87, 114, 466—475]. Так, обнаружена аномалия диэлектрических свойств [469, 470], эффект ск ачкообразно-го изменения электропроводности [470], изменение вязкости в зависимости от расстояния до твердой- стенки [114, 471, 472], появление предельного напряжения сдвига жидкости при приближении к поверхности твердого тела [14, 473, 474]. Для набухающего в водных растворах 1 а-замещенного монтмориллонита обнаружена оптическая анизотропия тонких прослоек воды [36] найдено изменение теплоемкости смачивающих пленок нитробензола на силикатных поверхностях [475]. Установлено отличие ГС от объемной жидкости по растворяющей способности, температуре замерзания, теплопроводности, энтальпии. В. Дрост-Хансеном опубликованы обзоры большого числа работ, содержащие как прямые, так и косвенные свидетельства структурных изменений в граничных слоях [476—478]. В качестве косвенных доказательств автор приводит, в первую очередь, существование изломов на кривых температурной зависимости ряда свойств поверхностных слоев. Эти температуры отвечают, согласно Дрост-Хансену, разной перестройке структуры ГС. Широко известны также работы Г. Пешеля [479] по исследованию ГС жидкостей (и, прежде всего, воды) у поверхности кварца в присутствии ряда электролитов. [c.170]

    В последнее время заметен положительный сдвиг в области экспериментальной гидродинамики зернистого слоя, вызванный разработкой специальных электродиффузионных, термоанемомет-рическпх и пневмометрических датчиков скорости, а также ири-мепепия лазерного доплеровского измерителя скорости [3]. Последний метод имеет то преимущество, что не вносит возмущений в структуру среды и в поток, однако предъявляет особые требования к оптической однородности материала частиц. В случае применения контактных датчиков для измерений в зернистом слое особенно остро стоит вопрос о корректности эксперимента. [c.16]

    Расчет физико-химических параметров реакций комплексо-образования посредством измеренных физических свойств — диэлектрической проницаемости и плотности (диэлектрометрия), оптической плотности (снектрофотометрия), химического сдвига (ЯМР), количества выделившегося тепла (калориметрия), температуры замерзания (криоскопия) [83]. [c.130]

    Определение эквиналентного уширяющего давления Р основано на упрощенной кинетической теории молекул с оптическим столкновительным диаметром Од для поглощающих и Оь для уширяющих (в данном случае азот) компонентов. Ширина линии у — результат сдвига естественной ширины в процессе молекулярных столкно- [c.492]

    При продолжительном окислении топлива (120 °С, Си) максимумы в спектрах поглощения окисленных проб смещались в длинноволновую область на 20....Ю нм в зависимости характеристики образца (табл. 5). Известно, что введение в ароматическую систему оксиалкильной (OR) и гидроксильной (ОН) групп, что вполне вероятно при окислении, способно привести к сдвигу максимума поглощения в длинноволновую область на 20 нм и более. В процессе окисления, после непродолжительного начального периода, значение оптической плотности топлива быстро достигало величин 1,8...2,0. В то же время топливо, ведерженное в указанных выше условиях, но в атмосфере инертного газа, практически не изменяло оптической плотности. [c.117]

    Конструкция модифицированного экструдера для ПЭНП. Хансон исследовал влияние продолжительности сдвига на реологические и физические свойства ПЭНП. Он наблюдал некоторые (обратимые) изменения этих свойств, связанные с распутыванием молекулярных цепей. Изменение реологических свойств, в частности, выразилось в увеличении способности к вытяжке, что позволило получать более тонкие пленки при больших скоростях. Изменение реологических свойств часто сопровождается также улучшением оптических свойств. Причем такое улучшение свойств зависит от суммарной деформации. Требуемый уровень деформации составляет примерно 10 ООО единиц сдвига. Было также обнаружено, что если подвергнуть такой обработке ПЭНП еще в реакторе и затем гранулировать полимер, то улучшенные свойства сохраняются при ориентировании полиэтиленовой пленки методом раздува на выдувных агрегатах. [c.415]

    В соответствии с существующей в настоящее время теоретической концепцией получение абсолютно чистых веществ т. е. совершенно не содержащих примесей) принципиально возможно, но только в очень небольшой области концентраций для достаточно большой пробы чистого вещества и за более или менее ограниченный промежуток времени. Для контроля чистоты необходимы особо чувствительные методы анализа. Применение методов ультрамикроанализа позволяет осуществить мечту аналитиков — обнаружение отдельных атомов в матрице вещества. Одним из таких методов является лазерная спектроскопия. Вещество испаряют и атомы селективно возбуждают действием лазерного излучения в узкой области частот. Возбужденный атом затем ионизируется вторичными фотонами. Число испускаемых при этом свободных электронов фиксируют пропорциональным счетчиком. С помощью эффективно действующей лазерной установки можно ионизировать все атомы определяемого вещества. Метод, основанный на использовании этого явления, называют резонансной ионизационной опектро-скопией (РИС). Например, можно определять отдельные атомы цезия. В другом варианте метода — оптически насыщенной нерезонансной эмиссионной спектроскопии (ОНРЭС) — измеряют интенсивность флуоресцентного излучения возбужденных атомов. Чтобы отличить излучение определяемых элементов от излучения других компонентов пробы, длины волн флуоресценции сдвигают воздействием других атомов или молекул. Этим методом также можно определять отдельные атомы вещества, например натрия. [c.414]

    Сущность работы. Определение фенола и его метилпроизводных (о-, м- и л-крезолов) основано на измерении оптической плотности щелочных водных растворов, поглощающих свет в области 210-290 нм с максимумом при 235 нм. Избирательность определения достигается использованием батохромного сдвига спектральных полос поглощения щелочных растворов (pH я 13) относительно нейтральных растворов (pH 7). Такой сдвиг (рис. 15.17) обусловлен образованием фенолятов в щелочной среде. Светопоглощение в щелочной среде пропорционально содержанию не только основного компонента, но и количеству возможных примесей. Светопоглощение того же раствора, нейтрализованного до pH = 7, обусловлено только содержанием примесей. Таким образом, по разности оптических плотностей щелочного и нейтрального растворов можно найти содержание фенола в ана/[изируемом объекте. [c.171]

    Рассматривая более широко исследования оптически активных веществ, следует указать на хроматографический метод и метод ЯМР, которые здесь не излагаются. В первом методе используют хиральные неподвижные фазы в качестве адсорбента. Во втором методе создают условия для различий в химических сдвигах и интенсивностях отдельных сигналов энантиотропных групп за счет их взаимодействий с хиралЬным растворителем или хиральным сдвигающим реагентом (см. глЛ1). [c.168]

    Правило смещения Фрейденберга. Если два аналогично построенных диссимметринных соединения претерпевают одинаковые химические изменения, вызываюш,ие сдвиг оптического вращения в одном и том же направлении, то оба соединения, по всей вероятности, имеют одну и ту же конфигурацию. [c.203]

    Электромагнитное излучение радиоволнового диапазона генерируется и излучается макроскопическими объектами, которыми являются, например, высокочастотные передатчики и антенны. Такое излучение обычно когерентно. Излучаемые двумя независимыми источниками радиоволны могут беспрепятственно интерферировать. Излучение в оптической (инфракрасной, видимой, ультрафиолетовой) и рентгеновской областях спектра вызывается изменением энергетического состояния микросистем в атомной области. Такое излучение состоит из очень большого набора волн, характеризующихся малыми разностями частот. Эти электромагнитные волны не имеют определенных соотношений фаз, и поэтому они не когерентны. Явление интерференции для них может наблюдаться только в случае деления излучения на несколько потоков и закономерным взаимным сдвигом фаз в них. Эта кажущаяся противоположность обеих рассматриваемых областей была преодолена после изобретения оптического квантового генератора — лазера [Басов, Прохоров (1954), Шавлов, Таунс (1958), Мейман (1960)]. Осуществляющееся в лазере генерирование микросистемой когерентного излучения оптического диапазона своеобразно иллюстрирует единство спектров электромагнитного излучения. [c.172]

    Доказательства в пользу этого механизма заключаются в том, что при действии ОаВгз на оптически активный РНСНОСНз, меченный изотопом С по ароматическому кольцу, в присутствии бензола получается недейтерированный, а также дидейтериро ванный этилбензол, а скорость потери радиоактивности была примерно равна скорости потери оптической активности [386]. Механизм внутримолекулярной перегруппировки не очень ясен. Предполагается, что реакция представляет собой последовательность 1,2-сдвигов [387]  [c.383]

    Рассматривался также третий механизм, представляющий согласованный 1,2-сдвиг [294]. Поскольку принцип орбитальной симметрии требует инверсии при R [295] и запрещает миграцию с сохранением конфигурации (см. реакцию 18-35), согласованный механизм [296] для перегруппировки Стивенса невозможен, так как на самом деле миграция происходит с сохранением конфигурации. Однако для миграции аллильной группы этот механизм может быть справедлив (реакция 18-39). Превращение оптически активного аллилбензилметилфениламмо-нийиодида с асимметрическим атомом азота (т. 1, разд. 4.2) в оптически активный продукт [297] согласуется со всеми тремя механизмами  [c.168]

    Различия в химических сдвигах сигналов диастереотопных протонов невелико и это затрудняет применение рассматриваемого метода. Для того, чтобы увеличить это различие, предложено использовать оптически активные сдвигающие реагенты [1711, в частности европиевый комплекс [c.165]

    Надежной основой для определения конфигурации оптически активных соединений с асимметрическим атомом углерода являются данные специального рентгенографического анализа с использованием тяжелого атома, вводимого в молекулу. При этом используют Рентгеновы лучи с длиной волны, близкой к краю рентгеновского поглощения тяжелого атома, введенного в молекулу в качестве метки. В результате на обычную дифракцию накладывается фазовый сдвиг и рентгенограммы оптических антиподов становятся неидентичными. За два десятка лет, прошедших со времени открытия рентгеноструктурного метода определения абсолютной конфигурации соединений, благодаря применению автоматических дифрактометров и ЭВМ рентгенографические исследования существенно упростились, а время, необходимое для их проведения, существенно сократилось. [c.186]

    Для снятия С — -характеристики опускают зонд в нужную ячейку (переключатель /) /) —трп в нейтральном положении ). Переключателем рпр — чпрт прибора ГКЗ-40 включают -необходимую полярность напряжения. Используя ручки 7 и переключатель i) -, устанавливают желаемое напряжение. Переключателем +С Х 1000 и ручками достигают баланса, ориентируясь на минимум зеленого поля оптических индикаторов баланса. Записывают значение емкости. Измерив значение емкости для выбранных напряжений, строят характеристику С — V для структуры в координатах С/Сд — U. При этом за Сд принимают максимальную емкость МОП-структуры (при положительном смещении на верхнем электроде для п-кремния и при отрицательном —для р-кремния). Наносят на график в том же масштабе теоретическую С — V -кривую для кремния той же омности и при той же толщине пленки SiQ.2 (см. рис. 2 приложения). По сдвигу экспериментальной кривой относительно теоретической (AVfb) рассчитывают величину заряда и плотность [c.137]

    На первой стадии образование батородопсина происходит за времена порядка десятков пикосекунд, а каждая последующая в 10 —10 раз медленнее предыдущей. Согласно современным представлениям, изменения обусловлены стерической невозможностью для прямого а11-гра с-ретиналя поместиться на поверхности опсина. Лишь изогнутый 11-4<ис-ретиналь вписывается в белок. Поглощение кванта света приводит к фотоизомеризации и тем самым к напряженным структурам, а в конце концов — к расщеплению химической связи между белком и хромофором. Переход к батородопсину влечет за собой изомеризацию ретиналя с образованием почти аИ-граис-формы, но такой, которая еще не релаксировала к самой низкоэнергетической геометрии. Более сильно релаксировавший а11-гранс-изомер появляется на стадии люмиродопсина. На каждой стадии белковый скелет перегруппировывается заметно выраженные изменения, связанные одной или более углубленными внутрь карбоксильными группами, становятся видимыми в метародопсине I. Образование метародопсина И сопровождается депротонированием шиффова основания, а также существенными изменениями липидной структуры. Именно метародопсин II з Jпy кaeт следующий набор биохимических стадий, которые мы коротко рассмотрим. Изменения оптического поглощения, по-видимому, согласуются с представленной картиной. Понижение энергии возбужденного состояния вследствие взаимодействия ретиналя с опсином приводит к длинноволновому сдвигу соответствующей полосы поглощения, причем чем сильнее взаимо-дейс№ие, тем сильнее сдвиг. Когда последовательно образуют- [c.239]


Смотреть страницы где упоминается термин Оптический сдвиг: [c.127]    [c.383]    [c.45]    [c.125]    [c.265]    [c.220]    [c.41]    [c.45]    [c.183]   
Основы стереохимии (1964) -- [ c.253 ]




ПОИСК







© 2025 chem21.info Реклама на сайте