Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водорода окисление сенсибилизация

    Особой каталитической активностью отличаются вторичные амины, в частности фепил-р-нафтиламин. Замещение подвижного атома водорода в аминогруппе значительно снижает склонность аминов к сенсибилизации. Следует сказать, что использовать классические антиоксиданты нри фотоокислительной деструкции в отсутствие светостабилизаторов нецелесообразно [61, 93]. Антиоксиданты особенно эффективны в процессах, где скорость инициирования мала, а реакционные цени длинные, что характерно при термическом окислении и не соблюдается при фотоокислительной деструкции и коротких кинетических цепях. Показано, что длина цепи при фотоокислении полиэтилена равна только десяти. Это означает, что антиоксидант в условиях фотоокисления расходуется очень быстро и не успевает защитить материал [93]. Необходимо еще учитывать фотохимическое разрушение антиоксиданта и его ограниченную подвижность в твердой фазе. [c.90]


    А. П. Теренин [1347] и затем Льюис и Каша [1348] объяснили сенсибилизирующее действие пигментов превращением их в промежуточное мета-стабильное бирадикальное состояние при поглощении кванта света. Такой бирадикал, образованный размыканием электронной пары, может сенсибилизировать реакции переноса водорода и кислорода, участвуя в их промежуточных стадиях. По А. Н. Теренину и А. А. Красновскому [1349], при фотосинтезе водород обратимо переносится бирадикалом хлорофилла от воды к окислительно-восстановительным системам (например, к окисленным формам дегидраз), восстановленные формы которых включаются в темповые реакции фотосинтеза. Есть основания предполагать участие в сенсибилизации хлорофиллом фоторазложения воды каротиноидов в качестве переносчиков кислорода с промежуточным образованием перекисей. Однако попытки обнаружить внедрение О в ксантофилл при выращивании водорослей в HgO не увенчались успехом [1350]. [c.476]

    СЕНСИБИЛИЗАЦИЯ ОПТИЧЕСКАЯ (сенсибилизация хроматическая) — повышение эффективности фотохимического процесса в области излучения, поглощаемого веществом (оптическим сенсибилизатором), не вступающим непосредственно в реакцию, но способным передавать энергию возбуждения реагирующим компонентам системы. К оптически сенсибилизированным реакциям относятся реакции фотодиссоциации водорода, сенсибилизированные парами ртути или кадмия реакции образования воды окисления SO2 в SO i или СО в СО2, разложения фосгена, озона, сенсибилизированные хлором разложение щавелевой кислоты, сенсибилизированное ураниловыми солями, и многое др. Наиболее нлирокое практическое значение С. о. получила в фотолизе галогенидов серебра, который является основой фотографического процесса. [c.222]

    Если в водных растворах красителей присутствует кислород, то можно ожидать образования некоторого количества лейкоформы за счет окисления воды, переокисляемой кислородом таким образом, должно образоваться эквивалентное количество окисленной воды. Другими словами, можно ожидать сенсибилизированного красителем образования перекиси водорода по уравнению (4.14), т. е. с таким же механизмом, который был рассмотрен выше для случая сенсибилизации окисью цинка. Блюм и Спилмен [63] утверждали, что они наблюдали образование перекиси водорода в освещенных растворах фдуоресцеина, а Ямафуджи и сотрудники [75, [c.82]

    Все описанные результаты исследований можно объяснить исходя из представлений о действии свободных радикалов, возникающих при радиолитическом разложении молекул воды. В растворах, не содержащих воздуха, краситель подвергается действию как Н-атомов, так и ОН-радикалов. Последние дают при этом сначала продукт частичного окисления, обладающий свойствами свободного радикала. Что касается водородных атомов, то они, по-видимому, не оказывают такого действия на краситель, поскольку при облучении 2- 10 М раствора метиленового голубого выход молекулярного водорода не превышает величины, соответствующей его образованию в качестве так называемого молекулярного продукта разложения воды [Н43]. Поэтому можно предположить, что водородные атомы осуществляют обратимое восстановление молекул красителя, образуя сначала свободные радикалы семихинона. Молекулярный кислород ингибирует этот процесс, вступая в конкуренцию с красителем за атомы водорода. Кроме того, он может окислять свободные радикалы семихинона, прежде чем они успеют диспропорционировать с образованием лейкоформы красителя. Роль свободных радикалов НОг (или О г), образующихся в такой системе, остается пока неясной. Обнаруженное здесь влияние мощности дозы получило объяснение, исходя из представлений о существовании конкуренции между рекомбинацией свободных радикалов и взаимодействием последних с молекулами красителя [D57, Н107, R32]. Однако, хотя это объяснение и не вызывает возражений, все же трудно сделать дальнейшие выводы (несмотря на ряд попыток, предпринятых в этом направлении), ввиду неясности и очевидной сложности механизма процесса. Сенсибилизация радиолитического окисления красителя, осуществляемая ионами окисного железа, может быть обусловлена частично способностью этих ионов связывать атомы водорода, подавляя тем самым процесс восстановления красителя. Отчасти она может быть проявлением эффективного окисляющего действия указанных ионов по отношению к свободным радикалам, являющимся промежуточным продуктом окисления [c.212]


    Сенсибилизация окисления воды к более длинноволновому свету осуществлена в гетерогенной фотореакции на полупроводнике п-типа — 2пО [59]. При этом, правда, не всегда выделялся молекулярный кислород. Обнаруживаемым продуктом фотопроцесса являлась перекись водорода. В зависимости от каталитической активности образца 2пО равновесная концентрация Н2О2 составляла 10 —10 моль/л. [c.43]

    С успехом могут быть использованы для изготовления серебряных зеркал методом химического серебрения, вызывают сенсибилиза-иию с такими же характеристиками, какие были описаны для случая восстановительной сенсибилизации хлоридом олова [4]. В настоящей работе были использованы многие восстано вители такого типа при различных концентрациях ионов серебра и водорода. Установлено, что наиболее эффективные сенсибилизаторы обладают устойчивой окисленной формой, не у 1аств тощей в обратной реакции с восстановленной формой. [c.54]

    В работах нашей лаборатории было показано, что хлорофилл и его аналоги способны в различной мере производить перенос как активного кислорода, так и лабильного водорода от доноров на соответствующие субстраты за счет энергии сравнительно небольших квантов красного света, поглош,аемого пигментами. Так, хлорофилл и фталоцианин значительно ускоряют при освещении окисление молекулярным кислородом как олеиновой кислоты, присоединяющей кислород, так и аскорбиновой кислоты, отдающей водород, одновременно окисляя частично и растворитель [6, 11]. Первичная реакция состоит, очевидно, в описанном выше взаимодействии пигментов с кислородом в первом случае и с аскорбиновой кислотой (АНз) — во втором. Олеиновая кислота (В) реагирует с активной перекисью пигмента, в то время как аскорбиновая кислота дегидрируется, реагируя дальше с кислородом. Пигмент при этом регенерирует. Таким образом, в согласии с представлениями К. А. Тимирязева, сенсибилизация хлорофиллом не есть передача энергии компонентам с переводом их в реакционноспособное состояние, а непосредственная обратимая реакция самого пигмента в его фотоактивированной, вероятно бирадикальной, форме (-X ) с различными участниками. Происходит ли сначала реакция пигмента с кислородом или восстановление пигмента аскорбиновой кислотой — зависит от природы растворителя. Оба процесса идут одновременно, но в различных средах (спирт или пиридин) доминирует тот или другой. Описываемые здесь реакции можно изобразить следующей схемой  [c.370]


Смотреть страницы где упоминается термин Водорода окисление сенсибилизация: [c.39]    [c.396]    [c.432]   
Основы химической кинетики (1964) -- [ c.395 ]




ПОИСК





Смотрите так же термины и статьи:

Сенсибилизация



© 2025 chem21.info Реклама на сайте