Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галлий, определение примесей

    Для выбора оптимальных условий определения была исследована степень влияния элемента основы и сопутствующих примесных элементов, подобраны экстрагенты, дающие возможность не только сконцентрировать определенную примесь в меньшем объеме раствора, но и повысить молярный коэффициент погашения вследствие образования в органической фазе соединений с новыми свойствами. Кроме того, усовершенствованы способы измерения оптической плотности растворов в результате использования специальных кювет малого объема с большой длиной оптического пути. Все это позволило не только поднять точность определения, но в ряде случаев также повысить и чувствительность определения до 10 %, которая для химических методов определения примесей в металлах и их соединениях является очень высокой. Такие методы анализа предложены, например, для определения примесей ртути и никеля в индии, железа в таллии, фосфора в галлии, мышьяке и их соединениях, включая арсенид галлия. [c.12]


    На основании результатов исследования нами были разработаны методики определения ванадия в металлическом галлии, очищенной воде и окиси кальция с применением сульфоназо (до настоящего времени примесь ванадия определяли с применением бензидина , обладающего канцерогенными свойствами). [c.20]

    Менделеев указал, что источником вероятной ошибки в определениях Лекок де-Буабодрана могла быть примесь натрия, с помощью которого получался металлический галлий. Так как у N8 удельный вес очень мал (0,98), то даже незначительная примесь N8 к Оа должна вызывать уменьшение удельного веса Оа, найденного эмпирически. [c.481]

    Из приведенных результатов следует, что предложенный амперометрический способ определения галлия может быть рекомендован для определения галлия в присутствии больших количеств алюминия. Эта задача представляет определенный практический интерес ввиду того, что металлический алюминий большей частью содержит примесь галлия и может служить сырьем для получения последнего. [c.55]

    Выводы автора основаны в первую очередь на измерениях Грэма, в распоряжении которого был лишь галлий недостаточной чистоты. Измерения электрокапиллярных кривых и дифференциальной емкости, а также определение потенциала нулевого заряда, выполненные с галлием высокой степени чистоты (>99,9998%), привели, однако, к иным результатам [171—174]. При достаточно высоких отрицательных зарядах поверхности электрокапил-лярное поведение галлия действительно близко к поведению ртути разница между потенциалами, соответствующими одинаковым зарядам на обоих электродах, составляет 0,17 в. При смещении потенциала в положительную сторону наблюдается резкое возрастание дифференциальной емкости, которое в отличие от ртути не может быть объяснено специфической адсорбцией анионов. Причина его, по-видимому, заключается в изменении ориентировки адсорбированных диполей воды, которые по мере снижения отрицательного заряда поверхности поворачиваются своим отрицательным кислородным концом к поверхности галлия. Возможность такого изменения ориентировки привлекалась в случае ртути для объяснения появления горба на кривых дифференциальной емкости (гл. IV). Это явление, несомненно, сильнее выражено на поверхности галлия, что связано, по-видимому, с более сильной адсорбцией воды на незаряженной поверхности галлия по сравнению с поверхностью ртути. Более прочная адсорбция воды приводит также к заметным различиям между поведением анионов на обеих границах раздела. Так, ион СЮ " который положительно адсорбируется на ртути, обнаруживает отрицательную адсорбцию на границе раздела галлий/водный раствор. — Прим. ред. [c.135]


    Методика работы с хлоридами, находящимися при комнатной температуре в жидком состоянии, заключалась в следующем. Стеклянную пробирку, снабженную системой кранов и ампул для отбора проб, откачивали до остаточного давления 10 2 мм рт. ст. и заполняли исследуемым хлоридом (10—15 мл). Затем с помощью системы протяжки пробирку с заданной скоростью опускали в криостат, охлаждаемый жидким азотом (при проведении направленной кристаллизации треххлористого галлия, имеющего температуру плавления -f78° , пробирку с веществом помещали в электропечь криостат имел температуру, близкую к комнатной). Во всех опытах жидкая фаза подвергалась принудительному перемешиванию для обеспечения равномерного состава. Перемешивание осуществляли никелевой мешалкой, подвешенной в магнитном поле вращающегося кольцевого магнита. Процесс кристаллизации прекращали, когда оставалось незакрп-сталлизованным 5—10% вещества. Для смеси одного состава проводили серию опытов, меняя скорость кристаллизации и долю незакристаллизовавшейся жидкости. Эффективный коэффициент распределения вычисляли по известному уравнению [5], описывающему распределение примеси по длине слитка при направленной кристаллизации. Для определения равновесного коэффициента распределения проводили экстраполяцию зависимости эффективного коэффициента от скорости кристаллизации к нулевой скорости по уравнению Бартона— Прима — Слихтера [6]. [c.105]

    Германий обладает полупрозодннковЫдМи свойствами и с зти.м связано его основное применение. Германий, идущий для изготовления полупроводниковых приборов, подвергается очень тщательной очистке. Она осуществляется различными способами, Один нз важнейших методов получения высокочистого германия — это зонная плавка (см. 193). Для придания очищенному германию необходимых электрических свойств в него вводят очень небольшие количества определенных нри.месей. Такими примеся.ми служат элеме ты пятой и третьей групп периодической системы, например, мышьяк, сурьма, алюминий, галлий. Полупроводнико- [c.520]

    При определении следов веществ находили применение все методы, используемые в химическом анализе, в том числе даже весовые методы. Например, менее 0,001% галлия в алюминии определяли весовым путем в навеске в 50 е . Иногда для определения следов веществ пригодны объемные методы (определение серебра, иода и т. д.), особенно если конечная точка титрования определяется потенциометрически. Может найти приме- [c.20]

    В первой работе Сиборга и Ливингуда [П27] приведен ряд примеров активационного анализа. Примесь 0,0006% галлия к железу была обнаружена облучением образца дейтеронами 6,4 Мэв из циклотрона. При этом галлий дает по реакциям Оа й, р) и (й, р) два, 8-активных изотопа Оа и Оа с полупериодами 20,3 мин. и 14,3 час. После прибавления небольшого количества галлия, в качестве носителя, он был отделен химическим путем от железа, которое также содержало -активный изотоп Ре с полупериодом 47,1 дня, образовавшийся в результате реакции Ре ( , р). Дейтеронное облучение железа дает также несколько радиоактивных изотопов кобальта и марганца, но они не попадали в железную фракцию после ее отделения. Из сравнения активностей Оа °, Оа и Ре , соотношение которых, после поправки на распад за время после облучения, было 0,16 0,091 217, и из природного изотопного состава галлия и железа было вычислено указанное содержание галлия в образце, предполагая, что активность каждого компонента в начальный момент пропорциональна его концентрации, как дает уравнение (9—3) при одинаковых а. В той же работе приведено определение примеси железа к окиси кобальта, в которой после облучения дейтеронами- обнаружена В-активность с полупериодом 18,2 час., принадлежащая Со , образовавшемуся по реакции Ре й, р). Примеси 0,01—0,1% меди к никелю, а также ничтожные следы серы и фосфора в бумаге были открыты после облучения нейтронами, полученными от бериллиевой мишени, на которую направлялся пучок дейтеронов из того же циклотрона. В этих случаях радиоактивные изотопы образуются по реакциям п, ) из стабильных Си и Си , и 5 . В работе Кинга и Гендерсона [1128] примеси до 0,01% меди в серебре были открыты путем облучения а-частицами из циклотрона. Реакция Си (а, п) дает -активный Оа с полупериодом 9,45 часа, который легко может быть отличен от одновременно образующихся из серебра изотопов и с гораздо [c.439]


Смотреть страницы где упоминается термин Галлий, определение примесей: [c.247]   
Физические методы анализа следов элементов (1967) -- [ c.99 , c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлий определение

Галлы

Примесей определение



© 2024 chem21.info Реклама на сайте