Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активный центр сравнение

    Общий механизм каталитического действия координационных комплексов сводится к облегчению электронных переходов в общей системе электронов и ядер внутри комплекса по сравнению с переходами между отдельными молекулами. С этих позиций естественно считать, что стадия образования координационных комплексов может ускорять как реакции окисления—восстановления, так и реакции перераспределения валентных связей (ин-тра- и интермолекулярные), поскольку между различными молекулами, входящими в координационную сферу комплекса в качестве лигандов, взаимодействие облегчается 5, 61. В случае гетерогенного катализа через координационные комплексы можно рассматривать активный центр как металл (его ион) с незаполненной сферой лигандов и применять к нему уже известные общие и частные принципы связи между строением комплексообразующего иона или ненасыщенного комплекса с его каталитической активностью. Существенную роль в определении активности катализатора в координационном катализе играют стабильность первоначально образующегося комплекса в реакциях, протекающих по механизму замещения лигандов. В этом случае, как следует из общей теории катализа и принципа энергетического соответствия Баландина, должна наблюдаться экстремальная зависимость между активностью катализатора и стабильностью комплекса. [c.59]


    Ванадий относится к группе тяжелых металлов, отравляющих катализаторы, однако исследования era свойств показали, что наличие на алюмосиликатном катализаторе небольшого количества ванадия (0,0003—0,003%) повышает индекс активности почти на 3 пункта. В результате степень превращения сырья увеличивается по сравнению с исходным катализатором за счет увеличения выхода бензина. Увеличение выхода бензина не отражается на коксо- и газообразовании, отношение бензин кокс повышается. Добавление малых порций ванадия способствует образованию определенного количества ненасыщенных углеводородов, которые инициируют крекинг насыщенных углеводородов и тем самым увеличивают степень превращения сырья и выход бензина. Содержание ванадия ограничивается содержанием непредельных углеводородов в реакционной смеси. С увеличением количества непредельных углеводородов скорость крекинга насыщенных углеводородов уменьшается, так как на активных центрах катализатора адсорбируются в первую очередь непредельные углеводороды. Получающиеся при дегидрировании непредельные углеводороды крекируются и образуют в несколько раз больше кокса, чем парафиновые углеводороды. Кокс экранирует активные центры катализатора, в результате чего активность резко уменьшается. [c.23]

    Уравнение для скорости реакции в принципе можно получить по скоростям отдельных этапов. На практике это приводит к усложнению задачи и не дает существенных преимуществ. Поэтому примем, что физические процессы, протекающие на четырех этапах (I, 2, 6, 7), обладают такой высокой скоростью, что их влияние нечувствительно по сравнению с адсорбцией, реакцией на поверхности и десорбцией. Будем считать, что основной вклад вносят адсорбция и десорбция. Предстоит, таким образом, определить скорость этих стадий через концентрацию адсорбируемого вещества, количество свободных активных центров и парциальное давление газа на поверхности раздела фаз. Так как, согласно сделанному [c.116]

    Хотя при метилировании Н15-57 в активном центре происходят лишь небольшие изменения, переходное состояние и тетраэдрический интермедиат дестабилизированы по сравнению с нативным ферментом. Участие гидроксильной группы в гидролизе эфиров и амидов также включает образование тетраэдрического интермедиата. [c.230]

    Активность ЦСК при крекинге индивидуальных парафиновых углеводородов С5-Сю на несколько порядков выше пй сравнению с аморфными алюмосиликатными катализаторами (АСК). При пере соде к широким нефтяным фракциям парафино-нафтенового характера активность ЦСК становится в 1,5-2 раза выше. По мере утяжеления фракционного состава, роста степени ароматичности разность в активности ЦСК и АСК уменьшается, но она всегда больше для ЦСК. Это обусловлено как большим числом активных центров, так и повышенной (в 50 раз) концентрацией углеводородов в порах цеолитов. [c.106]


    Практическое применение нашли макропористые катиониты, получаемые введением в реакционную массу в процессе полимеризации (или поликонденсации) инертного растворителя, который затем удаляется из объема полимера. Макропористые катиониты обладают повышенной механической, химической и термической стойкостью по сравнению с гелевыми, а наличие пор облегчает диффузию ионов к активным центрам. Однако выпускаемые промышленностью катиониты не могут быть применены при температурах выше 423 К. [c.26]

    Как правило, чем больше удельная площадь поверхности катализатора, тем большее число активных центров он имеет на поверхности, тем большей активностью он обладает как катапизатор. Хотя свежий катализатор имеет большой избыток активных центров по сравнению с тем, что необходимо дл я обеспечения определенного выхода продукта, любая значительная потеря числа активных центров вызывает потерю эффективности катал изатора. [c.154]

    Для объяснения высокой эффективности ферментативного катализа Эмиль Фишер (1894) предложил образное сравнение активный центр организован так, что субстрат входит в него как ключ в замок . В свете современных представлений этого явно недостаточно. Если говорить на языке Эмиля Фишера, то, во-первых, ключ должен был бы быть плохо подогнанным к замку и, крТ)ме того, нужно было бы принять во внимание также и силу, которая ключ повернула бы. [c.56]

    Так, структурные особенности поверхностного слоя белковых глобул позволяют сосредоточить в активном центре большое число различных по химической природе функциональных групп, способных не только сорбировать молекулу субстрата, но также и взаимодействовать с ней химически (см. гл. I). Среда активного центра обладает высокоразвитой микрогетерогенностью, где гидрофобные участки с исключительно низкой диэлектрической проницаемостью и полярностью (по сравнению с водой) чередуются с сильно гидратированными полярными областями с высоким электростатическим потенциалом и т. д. Поверхностный слой характеризуется также и повышенной микровязкостью. Все эти эффекты способствуют в конечном итоге многоцентровому взаимодействию фермента (его активного центра) с молекулой субстрата. [c.68]

    Определение абсолютной концентрации активных центров фермента из кинетических данных. В предыдущих разделах была рассмотрена кинетика ферментативных реакций в условиях избытка субстрата по сравнению с ферментом ([S]q [Elg). Рассмотрим теперь случай, когда концентрация субстрата сравнима по величине с концентрацией. фермента ([Slg [Е] ), и выведем уравнение для скорости ферментативной реакции, протекающей по двухстадийному мез анизму при условии быстрого установления равновесия на стадии образования фермент-субстратного комплекса  [c.232]

    Ности, вследствие чего именно здесь в наибольшей степени протекают процессы адсорбции. Ход реакции на поверхности раздела фаз в основном определяется находящимися на ней активными центрами. Частицы, которые удерживаются поверхностью, в общем не очень прочно связаны с поверхностью и имеют относительно высокую подвижность. В связи с этим поверхностная диффузия имеет более высокую скорость по сравнению со скоростью диффузии в объеме твердой фазы и сравнима по величине с диффузией в растворах. [c.432]

    Наиболее простое объяснение образования активных центров на поверхности твердых катализаторов заключается в наличии неровностей иа их поверхности. Так, на снимках, полученных с помощью электронного микроскопа, видно, что даже хороню отполированная блестящая поверхность меди или серебра имеет зубцы и выступы порядка 10- —10 м. Нетрудно догадаться, что атомы твердого вещества, расположенные в углублениях, энергетически более уравновешены по сравнению с атомами, находящимися на выступах шероховатой поверхности катализатора. На этих атомах, имеющих свободное силовое поле, в первую очередь происходит адсорбция реагирующих молекул. [c.164]

    Строение ферментов. По сравнению с неорганическими катализаторами ферменты имеют значительно более сложное строение. Каждый фермент содержит белок, которым и обусловлена высокая специфичность биологических катализаторов. По своему строению ферменты подразделяются на два больших класса однокомпонентные и двухкомпонентные. К однокомпонентным относятся ферменты, состоящие только из белковых тел, которые обладают каталитическими свойствами. У этих ферментов роль активных групп выполняют определенные химические группировки, входящие в состав белковой молекулы и получившие название активных центров. [c.168]

    В реальных условиях на границе адсорбент — раствор молекулы веще ства могут иногда покрывать поверхность не сплошным слоем, адсорбируясь лишь на отдельных активных центрах тогда соотношение (5) даст преуменьшенные значения 5. В других случаях может образоваться несколько слоев, вплоть до объемного заполнения части пор, тогда соотношение (5) даст преувеличенные значения 5. Тем не менее сравнение с данными, полученными при помощи независимых методов, показало, что часто метод дает правильные результаты. К сожалению, определение удельной поверхности — этой важнейшей коллоидно-химической характеристики системы — связано с большими трудностями как методического, так и принципиального характера. Поэтому изложенный метод, дающий правильную ориентировочную оценку величины удельной поверхности, с успехом применяется на практике, например для сравнительной оценки активности различных адсорбентов и катализаторов. [c.113]


    В 1925 г. X. Тейлор отметил, что не вся поверхность катализатора однородна и что каталитические реакции происходят лишь на отдельных точках поверхности, так называемых активных центрах. Естественно, что эти центры обладают и повышенной способностью к химической (активированной) адсорбции. По X. Тейлору, активные центры образуются на тех местах поверхности, где атомы слабее всего связаны с кристаллической решеткой металла, т. е. там, где силовое поле атомов наименее насыщено. Число таких активных центров, или пиков , сравнительно мало по сравнению с числом адсорбционных мест на всей поверхности катализатора (порядка 0,1%). [c.411]

    Таким образом, огромная активность ряда ферментов, особенно окислительного класса, обязана не каким-либо особым валентным свойствам простетических групп, а их энергетической подпитке за счет энергии реакции, захватываемой белковым носителем ( энергетическая авто-активация ) . Собственно же валентная производительность простетиче- ских групп практически совпадает со средней производительностью актинных центров обычных катализа торов (несколько молекул в секунду на один активный центр). Сравнение производительности активных центров металлических катализаторов на собственной решетке и на носителях устанавливает, что собственная решетка катализатора активи- [c.61]

    Рассмотрим характер конформационных изменений, возникающих при комплексообразовании карбоксипептидазы А с субстратоподобным ингибитором [15]. В активном центре свободного фермента (см. рис. 5) имеется система водородных связей (пунктир), которая простирается от Aгg-145 через амидные связи полипептидной цепи (01и-155, А1а-154, 01п-249) и молекулу воды (она не указана на рис. 5) до фенольного гидроксила Туг-248. При контакте этого же фермента с квазисубстратом глицил- -тирозином (см. рис. 7) электростатическое взаимодействие свободной карбоксильной группы квазисубстрата с гуанидиновой группой Aгg-145 (пунктир) вызывает смещение последней на 2 А (по сравнению с ее положением в свободном ферменте). Более того, это смещение одного остатка влечет за собой нарушение всей системы водородных связей, что приводит к повороту боковой цепи Туг-248 с перемещением ее фенольного гидроксила на 12 А. В результате между ней и амидным атомом азота в молекуле квазисубстрата образуется водородная связь (пунктир на рис. 7). [c.24]

    Все реакции, протекающие на поверхности, лимитируются диффузией, и относительное значение их уменьшается с ростом давления (включая /с ,,.), а поэтому возможно, что в области выше второго предела воспламененпя члены /с ,н и /с ,он будут настолько малы, что ими можно пренебречь и до некоторой степени упростить выражение. Однако при этих давлениях становятся значительныш реакции обрыва НО3 [26], по-видимому, в результате того, что вода отравляет активные центры и ингибирует инициирование, или же сильно возрастает сечение соударения для реакции 5 с участием НзО, или, наконец, гомогенный обрыв Н и ОН становится существенным по сравнению с обрывом на стенках, что увеличивает влияние реакции ингибпро- [c.393]

    В работе [72] показана важность сульфидирования. Индексы актив ности трех приготовленных форм катализаторов оксидной, восстановленной и сульфидированной оказались соответственно равны 25, 12 и 38. Катализатор в оксидной форме по активности занимает промежуточное положение между сульфидированной и восстановленной формами. На катализаторе в оксидной форме активные центры образуются в присутствии реакционной среды. Вероятно, количество зтих центров будет меньше, чем на катализаторе в сульфидированной форме-из-за частичного дезактивирования коксом и отравления необратимо хемосорбирован-ными серусодержащими соединениями. Большая активность оксидной формы, по сравнению с восстановленной, может бьггь объяснена тем, что соответствующие оксиды металлов менее чувствительны к отравлению, чем восстановленные. Другой возможной причиной является более легкое сульфидирование невосстановленных оксидов молибдена и кобальта (по сравнению с восстановленными) сероводородом, образующимся в результате гидрогенолиза сераорганических соединений. [c.97]

    Согласно теории Тейлора (20-е годы XX века),-активными центрами катализатора являются поверхностные атомы кристаллической р ШШ( й7 по каким-либо причинам находящиеся выше среднего уровня поверхности. Такие кристаллические пики обладают свободными валентностями и оказываются способными к образованию реакционноспособных промежуточных соединений, Представление об активной части поверхности как образовании, аномальном по сравнению с нормальной кристаллической поверхностью, находит свое подтверждение и в ряде качественных наблюдений. Например, Пальмер и Кон-стейбл, исследуя дегидратирование спиртов на металлической меди [c.335]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    Слоистая модель сорбции имеет ограниченное применение. Она, по-видимому, приемлема для некоторых ненабухающих минералов. Для многих сорбентов сорбцию следует рассматривать как процесс растворения одного вещества в другом [84, 649]. Использование в этом случае сорбционных данных, рассчитанных, как правило, по методу БЭТ, представляет интерес с целью учета различных сорбционных свойств материалов при сравнении и анализе полученных для них диэлектрических изотерм. Наблюдаемое для таких материалов [648, 650—656] совпадение величины моносорбции, определенной по БЭТ, с величиной критической гидратации ао (см. рис. 15.1), по-видимому, не следует интерпретировать с помощью слоистой модели. Это совпадение свидетельствует лишь о том, что с изменением характера сорбции изменяются и диэлектрические свойства системы сорбент — сорбат. Предполагается, однако, что при а<ао сорбция происходит непосредственно на активных центрах сорбента, а при а>йо — на ранее сорбированных молекулах воды [651, 652, 655]. [c.244]

    Этот факт, с одной стороны, указывает на приближенность одноцентрового рассмотрения, поскольку не только радикал Н определяет характер процесса и величину т . Даже задание Н = Нщах не исключает период индукции тождественно как фазу процесса. С другой стороны, неожиданно оказалось, что даже полное задание исходной концентрации всех промежуточных активных центров равными их пиковым значениям на момент окончания периода индукции (т. е. численный эксперимент в условиях Н(0) = Ктах) также не исключает период индукции как таковой (см. рис. 47, б), хотя и сокращает его весьма существенно по сравнению со случаем, когда только Н(0) = = Нщах- [c.348]

    Паровоздушное пространство технологических аппаратов иногда защищают введением специальных флегматизирующих составов, способных подавлять активные центры цепной реакции окисления, приводить к обрыву цепей и к торможению процесса горения. Более активное флегмати-зирующее действие этих добавок значительно уменьшает их расход по сравнению с негорючими газами. В качестве флегматизирующих добавок наибольшее распространение нашли галоидопроизводные вещества и продукты их распада. [c.79]

    Во втором предельном случае, когда скорост . химического процесса мала по сравнению со скоростью диффузии, к р, имеем к = к я w = кп. При этом реакция протекает в кинетической области, в которой концентрация активных центров у поверхности практически равна их контт,ентрации в объеме, как это следует из формулы (37.3). [c.208]

    Н, О и ОН) активных центров, ее схема значительно бол( е сложна по сравнению с рассмотренной ранее упрощенной схемой разветвленной ценной реакции, протекающей при участии одного активного цетре. [c.216]

    В целом микросреда поверхностного слоя обладает, как правило, более низкой диэлектрической проницаемостью (присущей органическим растворителям) по сравнению с водой [23]. Так, значение диэлектрической проницаемости в сорбционном участке активного центра химотрипсина меньше 10 (для воды е = 80 в бутаноле в = 8 в октане е = 2)  [c.21]

    Ввиду того что константы скорости и k , а также частоты и значительно превышают и соответственно к , при 800 К наиболее активными центрами нужно считать ОН и О (по сравнению с Н). Поэтому на основании метода частичных стационарных концентраций можно положить йпо 1й1 = = О и йпоШ = О, в результате чего вместо трех дифференциальных уравнений приближенно будем иметь одно [c.217]

    Единственным слабым пунктом теории перекисей является то обстоятельство, что ненасыщенные углеводороды обладают значительно меньшей склонностью к детонации, чем парафины однако они имеют ярко выраженную склонность образовывать перекиси. Это видимое противоречие приходится объяснять тем, что степень детонации может обусловливаться не столько количеством, сколько характером перекисерг, а также дополнять теорию перекисей —теорией свободного водорода, выдвинутой Льюисом. Последний считает первичным процессом окисления парафинов дегидрогенизацию их, в результате чего образуются ненасыщенные углеводороды и водород. Последний и является основной причиной возникновения детонации в двигателе. Можно думать, что получающийся в результате дегидрогенизации водород находится в атомарном состоянии, т. е. что процесс распада парафиновых углеводородов сопровождается химической активацией молекул водорода. Как известно, атомарный водород может мгновенно соединяться с кислородом, причем это соединение связано с выделением огромного количества энергии. Таким образом, получающееся соедпнение можно рассматривать как активный центр, который может активировать молекулы горюч й смеси и тем самым сильно способствовать ускорению химической реакцпи. Подтверждением теории свободного водорода (как дополнительного фактора-детонации) и является хорошо известная большая склонность к детонации нормальных углеводородов парафинового ряда по сравнению с нормальными углеводородами олефинового ряда. Можно также полагать, что в случае непосредственно окнсляел1ых ненредельных углеводородов первично получающиеся нестойкие перекиси успевают превратиться в стойкие перекиси, тогда как в случае нос родстве и но окисляемых предельных углеводородов этот процесс завершиться не успевает. Это том более важно, что именно нестойкие формы перекисей глав- [c.356]

    При газофазном окислении смесей углеводородов — о-ксилола и нафталина, нафталина и мегилнафталинов, антрацена и фенантрена, нафталина и антрацена — удается не только использовать более дешевое и доступное сырье, но и повысить селектизность окисления в сравнении с окислением индивидуальных углеводородов [53, с. 86—104 56—58]. Высокая эффективность окисления смесей антрацена и фенантрена объясняется тем, что обладающий меньшим потенциалом ионизации антрацен сорбируется пре-имущест)вецно на активных центрах, ответственных за образование хинонов, и тем препятствует расходованию фенантрена. Медленнее окисляющийся фенантрен, в свою очередь, препятствует сорбции образовавшегося антрахинона на центрах, ответственных за глубокое окисление, и поэтому защищает антрахинон от сгорания. В итоге повышается селективность превращения антрацена в антрахинон и фенантрена во фталевый ангидрид. Последние легко разделяются фракционной конденсацией [59]. [c.41]

    Большинство приведенных примеров показывает, что в основе механизма действия самоуничтожающихся ингибиторов ферментов лежит отщепление протона. По этой причине пиридоксальзависи-мые ферменты являются наиболее вероятными объектами такого ингибирования. Б будущем можно ожидать появления еще большего числа ингибиторов пиридоксальзависимых ферментов, механизм действия которых основан на инактивации функциональной группы, обусловленной карбанионной природой промежуточных соединений [315]. Весьма вероятно, что именно создание более селективных ингибиторов активного центра продвинет вперед разработку самоуничтожающихся ферментативных ингибиторов, или инактиваторов. По сравнению с рассмотренными ранее специфичными к активному центру необратимыми ингибиторами преимущество самоуничтожающихся ингибиторов состоит в том, что, будучи относительно нереакционноспособными, они становятся активными после взаимодействия с остатками в активном центре фермента. Активная форма зависит от каталитических особенностей конкретного активного центра. Таким образом, ингибирование катализируется самим ферментом. Однако оба типа ингибирования позволяют вводить метку и идентифицировать группы активного центра и функциональные группы ферментов. [c.458]

    При сравнении с неферментативными комплексами значения k—i оказываются, как правило, меньше аналогичных констант скоростей. Причину этого следует искать как в рассмотренных стерических затруднениях, ограничивающих скорость диффузии в поверхностном слое белковой глобулы так и в высокой прочности многоточечных (хелатных) комплексов с участием ферментов (/fa oq раздел Прочность комплексов фермент — лиганд этой главы). Так, из табл. 5 видно, что даже молекула воды обменивается между раствором и координационной сферой Мп бйстрее в случай свободного иона, чем встроенного в активный центр пируваткиназы [65]. [c.31]

    Такой процесс должен быть термодинамически более выгодным, чем (4.18), поскольку в него вносит свой вклад не только субстрат (за счет переноса гидрофобного фрагмента R из воды в органическую среду белка), но также и фермент, гидрофобная полость которого при взаимодействии с субстратом теряет термодинамически невыгодный контакт с водой [15, 116]. При условии полного вытеснения воды, из гидрофобной полости активного центра выигрыш свободной энергии гидрофобного фермент-субстратного взаимодействия должен быть по сравнению с (4.18) двойным и, следовательно, равным 2АСэкстр. [c.155]

    Среди ферментов, обнаруженных в живых организмах к настоящему времени, имеется несколько сотен деполимераз, основная функция которых заключается в деградации полимерных субстратов вплоть до мономеров или до фрагментов с относительно малой степенью полимеризации. Эти ферменты различаются по типу катализируемой ими химической реакции (гидролиз, перенос определенных химических групп, дегидратация, изомеризация и т. д.), по способу действия, специфичности к природе мономерных остатков полимера, специфичности к типу связей, соединяющих мономерные остатки и т. д. По-видимому, самая большая группа деполимераз в современной номенклатуре ферментов представлена 0-гликозидгидролазами, которые к тому же наиболее изучены по сравнению с другими ферментами с точки зрения их деполимераз-ного действия, а также строения протяженных участков их активного центра. [c.34]

    По этому поводу Тома и Аллен [15] резонно заметили, что продуктивная ассоциация субстрата с ферментом может доминировать над непродуктивной даже при относительно малой степени полимеризации субстрата по сравнению с протяженностью активного центра, когда по каким-либо причинам связывание субстрата происходит в основном с вовлечением каталитического участка активного центра. В таком случае положение излома на кривой зависимости типа log/екат от п будет соответствовать лишь нижнему пределу числа сайтов. Иначе говоря, число сайтов в активном центре может существенно превышать число мономерных остатков субстрата, при котором величина кат достигает предела. [c.49]


Смотреть страницы где упоминается термин Активный центр сравнение: [c.51]    [c.160]    [c.337]    [c.200]    [c.113]    [c.118]    [c.144]    [c.119]    [c.155]    [c.49]    [c.50]    [c.24]    [c.223]    [c.49]    [c.49]    [c.60]   
Химия протеолиза Изд.2 (1991) -- [ c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активный центр



© 2025 chem21.info Реклама на сайте