Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

сплавы меди испытание коррозионного действия

    Интересные результаты получены при исследовании вь действия на ситаллы различных агрессивных газов. Например, при изучении коррозионной стойкости разных материалов к соединениям хлора установлено следующее. Образцы 14 металлов и сплавов (хром, никель, сплав на основе никеля, сплав на основе титана, нержавеющая сталь, сплавы на основе меди и на основе ниобия) совершенно не выдерживали воздействия тетрахлорида титана. В то же время ряд технических ситаллов (К 4, 224-18 и др.) показали высокую коррозионную стойкость в сухом и влажном хлоре, в парах соляной кислоты, тетрах лоридов титана, кремния, углерода и циркония, а также в парах тетрахлори-дов тантала и ниобия. Испытания проводились при тевйхературах [c.129]


    Каталитическое ускорение окисления нефтепродуктов металлами приводит к образованию веществ, которые в свою очередь взаимодействуют с металлами. Так, сплав МА-5 корродирует под воздействием органических кислот значительно сильнее, чем сталь 20. Однако при испытании коррозионного действия гидрированного топлива на эти металлы оказалось, что сталь 20 корродировала сильнее сплава МА-5. Это объясняется тем, что в топливе Т-7, хранившемся в контакте со сплавом МА-5, кислотность за время хранения не изменилась, а после хранения в контакте со сталью, вследствие каталитического действия стали на процесс окисления, кислотность за 6 мес. возросла с 0,5 до 14,5 мг КОН/100 мл топлива. Нефтепродукты термического крекинга легче окисляются при хранении, поэтому они являются более коррозионно-активными по сравнению с продуктами прямой перегонки. В результате в присутствии крекинг-топлив довольно значительно корродируют медь, цинк и углеродистые стали  [c.117]

    Высокая оценка коррозионной стойкости сплавов никель —медь в морской атмосфере подтверждается н на практике. Уже много лет с успехом используется в качестве конструкционного материала для морских приложений сплав Монель 400, нз которого изготавливают палубную арматуру, стенды для коррозионных испытаний и т.д. Подобно нержавеющим сталям, сплав Монель 400 склонен к коррозии под действием кислородных концентрационных элементов. Поэтому еще на стадии проектирования следует по возможности избегать наличия щелей и других мест, где мог бы скапливаться солевой раствор, так как при этом возникают локальные коррозионные пары. [c.78]

    Во-вторых, коррозионный процесс можно ускорить путем изменения состава коррозионной среды. При этом, как уже указывалось, следует иметь в виду, что действие анионов является специфическим по отношению к каждому металлу. Например, ионы 50 - действуют на железо почти так же, как ионы хлора. В то же время сульфат-ионы не ускоряют коррозии алюминия и нержавеющих сталей. Более того, как показано одним из авторов работы [15], смесь ионов хлорида и сульфата играет пассивирующую роль и при определенном соотношении способна полностью подавить вредное влияние хлор-ионов. Поэтому при испытании нержавеющих сталей и алюминиевых сплавов увеличение концентрации сульфат-иона не приводит к ускорению коррозионного процесса. Такие сплавы надо испытывать в растворах, содержащих ионы хлора, и по возможности уменьшить концентрацию сульфат-ионов. Медные сплавы, наоборот, очень чувствительны к сульфат-ионам, поскольку растворимость сульфата меди выше хлорида. При испытании низколегированных и малоуглеродистых сталей применение смеси сульфата и хлорида также допустимо. [c.29]


    В промышленных условиях скорость коррозии алюминия составляет только одну треть скорости коррозии цинка и затухает во времени благодаря хорошей адгезии продуктов коррозии. Наряду с этим покрытие может часто действовать как анодное для стали и для менее коррозионностойких алюминиевых сплавов. Хадсон [20] показал, что срок службы алюминиевого покрытия, нанесенного способом напыления на стали, в условиях очень агрессивной промышленной атмосферы Шеффилда составит 4,5 года при толщине покрытия 38 мкм и более 11,5 лет при толщине 75 мкм. Алюминиевое покрытие, полученное напылением толщиной 125 мкм, также обеспечивает полную защиту против расслаивающей коррозии и коррозионного растрескивания алюминиевых сплавов системы алюминий — медь —магний (НЕ 15) и алюминий — цинк—магний (ДТД 683) при испытаниях до 10 лет в промыщленной и морской атмосфере [25, 26]. [c.398]

    Как уже было сказано, примеси железа, никеля и меди в сплавах магния оказывают большое влияние на коррозионную стойкость Б водных растворах. Несколько меньшее влияние они имеют при испытаниях в промышленной атмосфере действие их немного усиливается в атмосфере, загрязненной хлористыми металлами. Влияние этих примесей на снижение предела прочности после пребывания в атмосфере промышленного района и морского побережья показано на рис. 17, 19 и 20. [c.172]

    Метод ASTM был разработан для определения коррозионной агрессивности бензинов, реактивных и дизельных топлив и растворителей по отношению к меди, но он носит название Оценка коррозионной агрессивности нефтепродуктов по отношению к медной пластинке . Поэтому модификации этого метода применяют для испытания и редукторных масел. В основном метод предназначен для определения коррозионной агрессивности редукторных масел, содержащих присадки, преимущественно противозадирные. Для установления активности редукторных масел с присадками по отношению к меди в спецификациях предусматриваются различные условия испытания и характеристики результатов этих испытаний. Если действие масла на медь оказывается чрезмерным, это свидетельствует о том, что медные сплавы (бронза), используемые [c.301]

    Коррозионный процесс можно ускорить также путем изменения состава раствора, учитывая при этом специфическое действие анионов по отношению к различным металлам. Например, ионы SO42- действуют на железо почти так же, как хлорид-ноны. В то же время сульфат-ионы не ускоряют коррозии алюминия и нержавеющей стали. Добавка сульфата в хлоридный раствор оказывает пассивирующее действие и ири определенном соотношении способна полностью подавить действие хлорид-иона [3]. Поэтому при испытании нержавеющих сталей и алюминия нужно применять растворы хлорида натрия. Медные сплавы, наоборот, очень чувствительны к сульфат-ионам, так как растворимость сульфатов меди выше растворимости хлоридов. При испытаниях низколегированных и малоуглеродистых сталей допустимо применение электролитов, содержащих смеси сульфатов и хлоридов. [c.25]


Смотреть страницы где упоминается термин сплавы меди испытание коррозионного действия: [c.205]    [c.58]    [c.198]    [c.474]    [c.511]   
Коррозия металлов Книга 1,2 (1952) -- [ c.1089 , c.1092 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Испытания коррозионные

Медь сплавы



© 2025 chem21.info Реклама на сайте