Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитические реакции ускорение

    Однако физический смысл констант С и Е требует в данном случае определенного уточнения. Не рассматривая случаев, когда введение в систему гетерогенного катализатора изменяет направление протекающих в ней процессов, остановимся на сравнении скоростей некаталитической и каталитической реакций, когда направление процесса не изменяется и функции катализатора сводятся лишь к ускорению процесса. Очевидно, при этом необходимо принять во внимание обе константы уравнения Аррениуса С и Е), поскольку отношение констант скоростей каталитической и некаталитической реакций равно  [c.303]


    В табл. XII, 1 дана сводка сравнительных данных о кинетике реакций, ускоряемых молекулярным иодом. Механизм этих реакций сходен с механизмом распада диэтилового эфира. Характерным во всех случаях является изменение направления процесса в присутствии катализатора. Если ограничиться рассмотрением данных для распада трех простых эфиров, то бросается в глаза следующая закономерность для некаталитической реакции энергия активации увеличивается с усложнением молекулы, для каталитической — уменьшается. Ускорение, как видно из двух последних столбцов таблицы, обусловлено в основном снижением энергии активации в присутствии катализатора. Предэкспоненты увеличиваются не более чем в 70 раз этот эффект, по-видимому, также усиливается с усложнением молекулы распадающегося вещества. [c.276]

    Радикальный механизм гомогенного катализа возможен как в газовой, так и в жидкой фазе. Катализатор служит инициатором, направляющим реакцию по цепному механизму. Ускорение достигается в результате появления богатых энергией частиц — свободных радикалов в процессе самой реакции. По такому механизму протекают некоторые окислительные реакции в газах, полимеризация в жидкой фазе и т. п. Типичным примером газофазной каталитической реакции радикального типа моя<ет служить действие оксидов азота на окисление алканов, в частности метана в формальдегид. Взаимодействие метана с оксидами азота вызывает цепную реакцию с относительно легким зарождением цепей и высокой скоростью их обрыва. Механизм этого процесса можно представить упрощенно следующей цепью реакций  [c.222]

    В ряде каталитических реакций установление контакта между катализатором и субстратом происходит намного медленней, чем само химическое взаимодействие, и поэтому лимитирует общую скорость каталитической реакции. Ускорение первой стадии с помощью подходящих добавок и будет означать активирование катализаторов таких реакций. [c.59]

    Реакции между газообразными веществами на поверхности твердых катализаторов весьма часто применяются при осуществлении промышленных процессов (синтез метилового спирта, реакции гидрогенизации и дегидрогенизации углеводородов, синтез и окисление аммиака и т. д.). Кинетика таких каталитических реакций существенно изменяется по сравнению с кинетикой в отсутствие катализатора. В некоторых случаях увеличение парциального давления одного из реагирующих газов приводит вместо ускорения реакции к ее замедлению. В других случаях замедление реакций происходит вследствие увеличения количества одного из продуктов реакции. В гетерогенных газовых реакциях часто наблюдается дробный порядок реакций. [c.409]


    По мере накопления опытных данных о гетерогенных каталитических реакциях неизбежно возникает вопрос о строении и природе активной поверхности катализатора. В начале 20-х годов текущего столетия стало ясно, что далеко не вся поверхность катализатора, а только небольщая ее часть принимает участие в ускорении реакции. К этому заключению привели опытные факты, полученные при изучении адсорбции, отравления катализаторов, их спекания и некоторых других явлений. Разберем некоторые нз них. [c.331]

    КАТАЛИТИЧЕСКИЙ МЕТОД УСКОРЕНИЯ РЕАКЦИЙ [c.198]

    Влияние добавок ДЭГ на скорость каталитической реакции имеет сложный характер. При добавлении небольших количеств ДЭГ (менее 0,1 моль/л) наблюдается торможение реакции, а затем происходит резкое ее ускорение и при концентрации 0,106 моль/л константа скорости имеет свое максимальное значение, равное 106,1 10 V. При добавлении новой порции полярного растворителя происходит плавное торможение реакции. [c.54]

    Показано, что ДЭГ несколько ускоряет окисление меркаптида и в отсутствие катализатора. Однако вклад некаталитической реакции является очень низким (K aб = 1.61 10 V при концентрации ДЭГ 0,105 моль/л), поэтому наблюдаемые экстремальные зависимости константы скорости каталитической реакции от концентрации ДЭГ не могут быть объяснены только ускорением реакции каталитического окисления. Следовательно, причина наблюдаемой сложной зависимости константы скорости от концентрации ДЭГ заключается во взаимодействии катализатора и растворителя. [c.56]

    Если добавка катализатора действует на процесс ускоряюще, то явление называют положительным катализом, при замедлении (торможении) реакции—отрицательным катализом. Большинство каталитических реакций протекает с ускорением, и лишь в последние годы повысилось значение реакций торможения. К реакциям торможения относятся, например, стабилизация раствора формальдегида добавками метанола, стабилизация хлороформа добавками [c.21]

    Особенности каталитических реакций 1) количество катализатора остается неизменным (при отсутствии побочных реакций с его участием) 2) катализатор не изменяется химически в ходе реакции 3) ничтожно малое количество катализатора (по сравнению с количеством реагирующего вещества) значительно изменяет скорость реакции, причем ускорение реакции примерно пропорционально концентрации катализатора. Для многих гомогенных реакций [c.343]

    Внутримолекулярный кислотно-основной катализ представляет собой эффективный способ ускорения реакций в органических системах. Однако было бы полезно оценить вклад этого вида катализа в ферментативный катализ. Существует принципиальное различие между ферментативными химическими реакциями и реакциями в растворе. Скорость каталитических реакций в растворе описывается уравнениями второго порядка скорость увеличивается с увеличением концентрации катализатора. Реакции [c.209]

    С другой стороны, образование связи Е-Н не в переходном состоянии, а в исходном (в комплексе ХЕ- НУ) играет отрицательную роль в катализе чем прочнее фермент-субстратный комплекс (чем более отрицательные значения принимает величина ДО ), тем меньше значение [НУ], равное концентрации субстрата, до которой ферментативный процесс (2.1) по скорости превалирует над гомогенно-каталитической реакцией (2.2), и тем меньше, как видно из (2.21), сам эффект ускорения. Все эти положения иллюстрирует рис. 13. [c.42]

    Явление катализа П1ироко распространено в природе и интенсивно используется в технике для ускорения химических превращений. Катализатором называют вещество, которое существено изменяет скорость реакции, оставаясь химически неизменным после ее окончания и ие входит в состав продуктов превращения. Это, однако, пе означает, что катализатор вообще ие принимает участия в реакции. Влияние катализатора определяется его влиянием на протекание элементарных химических актов, при которых образуются неустойчивые промежуточные вещества. Это приводит к изменению механизма реакции, и она протекает по другому пути, чем в отсутствие катализатора. В результате уменьщается энергия активации реакции и увеличивается ее скорость. Вследствие распада промежуточных продуктов происходит регенерация катализатора, который вновь способен образовывать промежуточные соединения и, таким образом, продолжается его действие. Примером каталитической реакции является один из вариантов превращения молекул озона в кислород, происходящего в верхних слоях земной атмосферы  [c.520]

    Из рисунка видно, что если энергия активации даже наиболее затрудненной стадии ист меньше энергии активации реакции без катализатора , то это должно приводить к ускорению каталитической реакции. [c.349]

    Гомогенно-каталитические реакции. Указанные реакции характерны для процессов в газообразном и жидком состояниях. Роль катализатора в них формально сводится к снижению энергии активации и ускорению за счет этого реакции. Кинетические законы протекания реакций усложняются и требуют учета роли катализатора. При этом скорость гомогенно-каталитической реакции чаще всего пропорциональна концентрации катализатора. Для [c.203]


    Поверхность катализатора является неоднородной. Полагают, что на ней имеются так называемые активные центры, на которых главным образом и протекают каталитические реакции. При этом реагирующие вещества адсорбируются на этих центрах, в результате чего увеличивается концентрация их на поверхности катализатора. А это отчасти приводит к ускорению реакции. Но главной причиной возрастания скорости реакции является сильное повышение химической активности адсорбированных молекул. Под действием катализатора у адсорбированных молекул ослабляются связи между атомами и они делаются более реакционноспособными. И в этом случае (как и в случае гомогенного катализа) в присутствии катализатора требуется меньшая энергия активации, чем для той же реакции без катализатора. [c.85]

    Поверхность катализатора является неоднородной. Полагают, что на ней имеются так называемые активные центры, на которых главным образом и протекают каталитические реакции. При этом реагирующие вещества адсорбируются на этих центрах, в результате чего увеличивается концентрация их на поверхности катализатора. А это отчасти приводит к ускорению реакции. Но главной причиной возрастания скорости реакции является сильное повышение химической активности адсорбированных молекул. Под действием катализатора у адсорбированных молекул ослабляются связи между атомами и они делаются более реакционноспособными. [c.76]

    Таким образом, деформация металла может служить причиной, деформационного сдвига не только анодной, но и катодной поляризационной кривой в результате деформационной локализации анодных процессов. Вместе с тем при этом не исключена возможность увеличения тока обмена катодной реакции, например, в кислом электролите вследствие деформационного снижения энергии активации рекомбинации водородных атомов (по аналогии с ускорением каталитических реакций) [2]. Например, установлено, [c.164]

    Как и в случае гомогенных радиационных процессов, в гетерогенных системах могут получаться совершенно неожиданные результаты, специфические для инициируемых радиацией реакций. С другой стороны, суммарный эффект может определяться и простым ускорением обычного каталитического-процесса, направление которого не отличается от наблюдаемого в отсутствие облучения. Однако даже в таком случае это влияние может иметь весьма существенное значение, так как проведение каталитических реакций при более низких температурах во многих случаях дает значительно большие-преимущества, чем для гомогенных реакций. В этом случае может увеличиваться срок службы катализатора в результате эффективного проведения процесса в более мягких условиях. Поэтому область радиационных технологических процессов, в основе которых лежат каталитические реакции, может оказаться чрезвычайно перспективной. [c.121]

    Наряду с катализом за счет свободной энергии сорбции (см. 1—4 этой главы) ферментативные реакции находят источник ускорения в том, что молекула субстрата подвергается химической атаке не одной каталитической группой (как это происходит в гомогенно-каталитических реакциях второго порядка), а сразу несколькими. Это связано с тем, что третичная структура белка позволяет сосредоточить в активном центре фермента значительное число электрофильных и нуклеофильных групп, таких как имидазольная, карбоксильная, сульфгид-рильная, аммонийная, фенольная и др. (см. гл. I), которые, как известно из гомогенного катализа, представляют собой общекислотные и общеосновные катализаторы. Именно поэтому в промежуточных фермент-субстратных комплексах в принципе возможна атака сорбированной субстратной молекулы по механизмам общего кислотноосновного катализа. [c.61]

    Катализ — наиболее эффективное и рациональное средство ускорения химических реакций. Каталитические процессы применяются в промышленности в большом масштабе, причем область их применения прогрессивно растет. Подавляющее большинство новых производств, освоенных за последние годы химической промышленностью, включают каталитические процессы. Каталитические реакции подчиняются общим законам химии и термодинамики, но действие катализаторов значительно облегчает практическое осуществление ряда химических реакций. В присутствии катализаторов эти реакции ускоряются в тысячи и миллионы раз, протекают при более низких температурах, что экономически выгодно. Ряд промышленных процессов удалось осуществить только благодаря применению катализаторов. / [c.210]

    При протекании каталитической реакции через промежуточные комплексы влияние растворителя будет обусловлено его снособ-ностью образовывать комплексы с активными атомами поверхности катализатора. Если растворитель обладает высокой электронной донорно-акцепторной способностью или высокой л-электронной плотностью, то он сам будет входить в сферу лигандов комплекса и может понижать активность катализатора. Наоборот, достаточно инертные, неполярные растворптелп типа парафинов и циклопарафинов будут мало влиять на механизм комплексообразованпя. На кинетике процесса все это будет отражаться в виде ускорения или замедления скорости реакции при замене растворителя или усложнения формального уравнения кинетики вследствие изменения концентрации пли характера растворителя по ходу реакции. [c.50]

    Так, например, при неупругих столкновениях обшивок ракет и самолетов с молекулами воздуха, за счет накопления энергий неупругих соударений, обшивки могут оплавляться, а молекулы азота и кислорода вступать в каталитические реакции с образованием окислов азота и другие [25-27]. Поэтому, если в каталитических и ферментативных реакциях для их ускорения необходимо повышать частоту и энергию неупругих соударений, то для снижения сопротивления трения газов и жидкостей на твердой поверхности требуется снижать частоту и энергию неупругих соударений. Автором монографии разработаны и внедрены в промышленность принципиально новые и более экономически эффективные способы повышения частоты и энергии неупругих соударений реагирующих веществ с катализаторами, которые способны повышать активность всех имеющихся в мире промышленных катализаторов [17], а также экономически эффективные способы снижения частоты и энергии неупругих соударений обтекающих газов и жидкостей о твердую поверхность, в результате которых снижается сопротивление их трения до 20% , а следовательно, сокращают расход топлива на единицу мощности двигателя, также на 20% [28]. Эти же методы повышения или понижения частоты неупругих соударений можно применить и для повышения нли понижения скоростей ферментативных реакций в клетках животных и растений, так как термодесорбируемые субстраты неупруго соударяются внутренними поверхностями "кармана" (щелей) глобул ферментов, а изотермически десорбируемые субстраты (химически превращаемые вещества ферментом) неупруго соударяются с поверхностью глобул фермента [15]. Отметим, что полярные С и М-концевые и боковые группы белковой части ферментов расположены на поверхности глобул ферментов [29-31], их вращательные и колебательные движения совершаются с целью повышения частоты и энергии неупругих соударений субстратов с поверхностью глобул ферментов. Поэтому скорость ферментативных реакций в 10 " раз превышает скорости химических [29]. [c.46]

    Подобного рода эффекты возможны также и в ферментативных реакциях, поскольку микросреда активного центра многих ферментов обнаруживает по своей полярности или диэлектрической проницаемости свойства скорее органических растворителей, чем воды (см. гл. I). По аналогии с э ектами, наблюдаемыми в нефермента-тиБных реакциях, десольватация реагирующих групп в активных центрах ферментов может дать ускорение более чем в 10 раз [291 (если сравнивать ферментативный процесс с гомогенно-каталитической реакцией, идущей в воде). В литературе пока не описаны системы, для которых было бы строго доказано участие сольватационных эффектов или электростатической стабилизации, в ферментативном катализе. [c.67]

    В гомогенных каталитических реакциях скорость пропорциональна количеству катализатора. Само количество катализатора обычно невелико. Так, для заметного ускорения окисления Na2SOa в водном растворе достаточно добавления ничтожных количеств USO4 (до концентрации порядка М). [c.297]

    Действие фермента основано на сочетании концентрационного, ориентационного и нолифункционального эффектов. Первый из них дает примерно тысячекратное ускорение, второй (определенная ориентация молекул ферментами) — примерно такое же, но решающее значение имеет третий каталитический эффект — одновременное воздействие на молекулу вещества нескольких атакующих групп фермента или серии последовательных атак на превращающуюся химическую связь, т. е. согласованное взаимодействие нескольких реагирующих групп (полифункциональный катализ, как правило, не типичен для обычных химических реакций). Ускорению процессов способствуют и другие факторы, в частности искажение некоторых частей молекулы вещества, испытывающего превращение под влиянием фермента. При ферментативном катализе также образуются промежуточные соединения. [c.160]

    Специфическая избирательность катализаторов. Исследования каталитических реакций показали, что катализаторы образуют временные промежуточные соединения с реагирующими веществами. Для эффективного действия катализатора необходимо, чтобы он обладал химическим сродством к реагенту. В этом отношении катализаторы обладают специфической избирательностью, особенно ярко проявляющейся у ферментов. Каждый фермент действует на определенный субстрат или на ограниченное их количество, или только на определенный тип химической связи в молекуле вещества так, например, фермент сахароза разрывает в сахарозе глюкозидную связь между глюкозой и фруктозой и эту же связь —в молекуле трисахарида —рафинозы —с образованием дисахарида мелибиозы и фруктозы и т. д. Хотя некоторые системы могут реагировать и по нескольким направлениям, катализа-уоры вызывают ускорение процесса только в каком-либо одном [c.121]

    М. И. Темкин, изучая синтез аммиака, пришел к выводу, что ускорение этого процесса в присутствии железа определяется активированной адсорбцией азота на поверхности катализатора. Тейлор установил, что не вся поверхность катализатора однородна и что каталитические реакции происходят только на отдельных местах, называемых активными центрами. На этих центрах и происходит активированная адсорбция. Э и центры могут отличаться друг от друга своей активностью. На разных центрах одного и того же катализатора могут катализироваться разные реакции. Например, никель ускоряет реакции Н2 + С02==Н20 + С0 и Ы02 + Н2 = Н0Ч-Н20. Введение метанасильно замедляет первую реакцию, но не замедляет вторую. Это объясняется тем, что молекулы СП/, адсорбируются на активнь1х центрах никеля, которые катализируют первую реакцию. Поэтому адсорбция метана тормозит процесс. Активные центры, на которых катализируется вторая реакция, остаются не отравленными метаном. Давно известно отравление платинового катализатора соединениями мыщьяка при контактном получении серной кислоты и другие случаи действия ядов. [c.64]

    Если предположить, что для рассматриваемых пар некаталитической и каталитической реакций значение предэкспонен-циальных множителей [Ко) в уравнении Аррениуса близки, то можно, зная значения энергий активации для некаталитической ( 1) и каталитической ( 2) реакций, подсчитать величину ускорения реакции (у)  [c.140]

    Резкое ускорение химических процессов без затраты тепловой энергии- достигается при исп0Л1)30вании катализаторов. Механизм каталитических реакций включает [c.91]

    Зависимость константы скорости к каталитических реакций от температуры подчиняется уравнению Аррениуса [см. выражение (779а) ], причем энергия активации и каталитических реакций, как правило, меньше, чем некаталитических. Благодаря снижению и обеспечивается ускорение каталитических реакций по сравнению с некаталитическими. Снижение и объясняется тем, что реакция при катализе протекает по новому пути, складывающемуся из элементарных, химических реакций, энергия активации которых (и , 2 и т. д.) меньше, чем энергия активации некаталитической реакции и. [c.470]

    Наиболее важная возможность управления реакцией — ускорение желательной реакции с помощью специфически действующего катализатора. Для этих целей не имеют себе равных по эффективности биокатализаторы (ферменты, ферментные системы). Однако химиками также найдены катализаторы очень высокого селективного действия, в качестве примера можно привести направленное каталитическое гидрирование окиси углерода либо до углеводородов (синтез Фишера—Тропша), либо до метанола нли высших спиртов. Эти синтезы имеют важное промышленное значение. Необходимо подчеркнуть, что катализатор в одинаковой степени ускоряет и прямую, и обратную реакции и, следовательно никак не влияет на положение равновесия. [c.196]

    Степень стабильности связи Ме—С чрезвычайно важна для каталитической реакции если связь слишком стабильна, то не сможет раскрыться для встраивания мономера, а если слишком нестабильна, то скорость распада будет выше, чем скорость внедрения мономера. Для приведенного комплекса в октаэдрическом состоянии связь Т1—С2Н5 в отсутствие мономера в течение I ч распадается с восстановлением Т1 + до Т1 + и выделением этана и этилена. Ускорение восстановления (дестабилизации связи С—Т1) происходит с увеличением способности добавленного неполимеризующегося олефина к координированию. [c.148]

    ФОТОКАТАЛИЗ, ускорение хим. р-ции, обусловленное совместным действием катализатора и облучения светом. Для кинетики фотокаталитич. р-ций характерны те же закономерности, что и для каталитич. и фотохим. р-ций (см. Каталитических реакций кинетика, Фотохимические реакции). Особенность фотокаталитич. р-ций состоит в том, что раздельное действие света или катализатора не оказывает значит, влияния на скорость р-ции. Ф.к. широко распространен в природе (см., напр.. Фотосинтез). [c.170]


Смотреть страницы где упоминается термин Каталитические реакции ускорение: [c.306]    [c.618]    [c.124]    [c.618]    [c.270]    [c.10]    [c.325]    [c.237]    [c.356]    [c.166]    [c.111]   
Лекционные опыты по общей химии (1950) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Каталитический метод ускорения реакций

Каталитическое ускорение реакций дегазации

Опыт 3. Каталитическое ускорение реакции разложен,ия перекиси водорода

Опыт 3. Каталитическое ускорение реакции разложения перекиси во- а дорода

Опыт 3. Каталитическое ускорение реакции разложения переклей водорода

Опыт 4. Каталитическое ускорение реакции разложения бертолетовой соли

Реакции каталитические

Ускорение



© 2025 chem21.info Реклама на сайте