Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ниобий и сплавы на его основе, тантал, ванадий

    V, N5, Та — важные материалы современной техники Сплавы на основе этих металлов обладают высокими антикоррозионными свойствами, механической проч ностью, высокими температурами плавления Они широко используются в реактивной и космической технике, при создании атомных реакторов, являются перспективными материалами в химическом машиностроении Сверхпроводящие сплавы, катализаторы, радиоэлектроника, медицинская техника — дополнительные области применения элементов группы УВ Уникальной особенностью обладает чистый тантал, который не раздражает живую ткань и поэтому используется в костной хирургии Соединения ванадия ядовиты Один из растительных концентратов этого металла — ядовитый гриб бледная поганка В то же время известна роль ванадия как одного из катализаторов биохимических реакций Он от носится к микроэлементам, необходимым для всех живых организмов Внесение V в соответствующих дозах в почву приводит к лучшему усвоению растениями азота, увеличению содержания хлорофилла в листьях, лучшему накоплению биомассы в целом Биологическая роль ниобия и тантала не обнаружена [c.468]


    НИОБИЯ СПЛАВЫ - сплавы на основе ниобия. В пром. масштабах применяются с начала 50-х гг. 20 в. Отличаются высокой жаропрочностью, сравнительно небольшой плотностью, низким поперечным сечением захвата тепловых нейтронов (1,15 барн/атом), пластичны при обработке давлением и хорошо свариваются, стойки в некоторых кислотах и в расплавах щелочных металлов. При нагреве на воздухе и в др. окислительных средах подвержены окислению при т-ре свыше 400° С. По мех. св-вам при рабочей т-ре различают низкопрочные сплавы, имеющие преимущество перед нелегированиым ниобием при т-ре до 1100—1150° С среднепрочные сплавы (применяемые до т-ры 1200—1250° С) и высокопрочные сплавы (применяемые при т-ре до 1250—1300° С, кратковременно до т-ры 1450—1500° С). Низкопрочные сплавы содержат в качестве легирующих элементов гл. обр. титан, цирконий или гафний, иногда ванадий и тантал. Т-ра плавления таких спла- [c.74]

    В периодической системе элементов имеется ограниченное число металлов, на основе которых можно создавать высокопрочные материалы. Одним из весьма перспективных металлов из группы тугоплавких является ниобий, занимающий место в пятой группе его ближайшими аналогами являются ванадий и тантал. Ниобий как элемент с незаполненной а-электронной оболочкой имеет склонность к образованию твердых растворов со многими элементами. Это свойство ниобия можно использовать в технике для создания металлических сплавов. Ограниченность технического использования ниобия и его сплавов объясняется тем, что их физические и химические свойства еще недостаточно изучены. [c.10]

    Недостатки сплавов на основе ниобия, ванадия и тантала — окисляемость их на воздухе при нагреве, поэтому в области температур выше 400° С они должны применяться с защитными покрытиями. [c.130]

    Ниобий и сплавы на его основе, тантал, ванадий [c.181]

    Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий). [c.39]

    Сплавы на молибденовой основе, содержащие титан, ванадий, тантал, ниобий, хром или вольфрам, представляют собой однофазные твердые растворы. [c.488]

    Весовые методы определения ниобия и тантала в сплавах основываются на осаждении ниобия и тантала и прокаливании до пятиокисей. Для осаждения применяют хлорную, сернистую, фениларсоновую кислоты, БФГА [40]. Сравнительная оценка методов анализа сплавов на основе ниобия, содержащих от 1 до 25% молибдена, ванадия, титана и циркония, приведена в [158]. [c.23]


    Широко известные жаропрочные и жаростойкие сплавы на основе железа, никеля и кобальта уже перестают в полной мере удовлетворять все возрастающим требованиям машиностроения, приборостроения, ядерной техники, радиоэлектроники и других отраслей промышленности. Материалы на основе тугоплавких металлов — титана, циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена, вольфрама и рения и их высокотемпературных соединений — бо-ридов, карбидов, нитридов, силицидов и окислов в значительной степени могут отвечать запросам промышленности. Этим объясняется повышенный интерес к тугоплавким материалам. [c.4]

    Для элементов УБ группы характерны тугоплавкость, устойчивость по отношению к воздуху и воде, а ниобий, тантал и сплавы на их основе устойчивы и в агрессивных средах. Высоко тугоплавки и коррозионностойки их нитриды, карбиды, бориды. Гидратированные оксиды этих элементов имеют неопределенный состав /МгОб-хНгО. Для оксоанионов в кислых растворах характерна полимеризация. Высшие галогениды и оксогалогениды ванадия и ниобия гидролизуются нацело. Ванадий в степени окисления + 5 в кислой среде проявляет окислительные свойства. Для элементов этой подгруппы, как и для подгруппы хрома, характерно образование пероксокомплексов. [c.523]

    Фотометрические методы используются для определения небольших количеств многих редких элементов бериллия в вольфраме и сплавах галлия, индия, таллия, редкоземельных элементов и германия в разнообразных объектах титана в горных породах, рудах, сплавах, в металлических вольфраме и цирконии тория в горных породах, цирконе и других материалах циркония в различных материалах ванадия в рудах, минералах, сплавах, сталях, металлическом цирконии ниобия в горных породах и минералах тантала в металлических цирконии, гафнии, ниобии висмута в металлическом молибдене молибдена в сплавах на основе титана, сталях и минеральном сырье селена и теллура в рудах и минералах рения в молибденсодержащих продуктах и в сплавах с танталом или вольфрамом. [c.22]

    Книга знакомит читателя со свойствами новых конструкционных металлических материалов, которые в настоящее время уже получили признание (сплавы на основе титана, циркония), а также с материалами, которые в недалеком будущем должны найти широкое применение (сплавы на основе молибдена, тантала, ниобия, ванадия и ряда других металлов) благодаря своим очень ценным качествам. [c.8]

    Наиболее склонны к возгоранию металлы, при взаимодействии которых со фтором образуются газообразные или легкоплавкие продукты реакции вольфрам, молибден, ниобий, тантал, кремний, бор, рений, хром, осмий, ванадий, титан, платина и сплавы на их основе. Для инициирования самоускоряющейся реакции взаимодействия этих металлов со фтором обычно требуется нагревание до 150—200 °С, затем процесс продолжается за счет тепловыделения собственно химической реакции. Применение этих металлов в конструкциях следует строго ограничивать. [c.441]

    ВАНАДИЯ СПЛАВЫ — сплавы на основе ванадия. Применяются со 2-й половины 20 в. Отличаются относительно высокой жаропрочностью при т-ре 500-—600° С, низкой плотностью, коррозионной стойкостью в жидких щелочных металлах, низким сечением захвата быстрых нейтронов, хорошей обрабатываемостью. В. с. подразделяют на конструкционные жаропрочные сплавы и сплавы со специальными физ. и хим. св-вами. К особым относятся сверхпроводящие сплавы. Конструкционные жаропрочные В. с. в свою очередь подразделяют на малолегированные технологические сплавы на основе системы ванадий — титан с различными легирующими элементами и высоколегированные и более прочные сплавы на основе систем ванадий — ниобий и ванадий — ниобий — тантал. Ванадий является хорошим растворителем многих хим. элементов, поскольку радиус его атома отличается от радиуса этих элементов незначительно. Нисходящий ряд растворимости легирующих элементов в ванадпи нри т-ре 1000° С ( 0,6 близкой к возможным [c.176]

    С особенно высокими температурами приходится сталкиваться при космических полетах. По своей жаропрочности для этих целей наиболее перспективны сплавы на основе молибдена. Но из-за плохого сопротивления окислению они нуждаются в защитных покрытиях и хорошего сцепления с основой. Чао, Прист и Майерс [935] в предварительном порядке исследовали долговечность и пластичность различных покрытий. В качестве исходного материала они выбрали сплав молибдена с 0,5% Ti. Листы из этого сплава защищали покрытиями, наносимыми путем камерной цементации , но детали этого процесса онп не сообщают. Процесс нанесения покрытия первого типа предпо-пагает совместное осаждение кремния и легирующего элемента (бор, углерод, кобальт, хром, ниобий, тантал, ванадий, вольфрам или цирконий) за один цикл. Процесс второго типа включает два цикла. За первый цикл наносится хромистое (или хромокремниевое) покрытие, тогда как за второй цикл осуществляется совместное осаждение кремния с каким-нибудь одним металлом (или просто осаждение одного металла). Процесс третьего типа предназначен для нанесения многослойных чередующихся покрытий, причем за отдельные циклы поочередно наносятся слои хрома, кремния и легирующих элементов, связывающиеся друг с другом и с основой посредством диффузионных зон. [c.401]


    При закалке и отпуске закаленных сплавов циркония, легированных такими элементами, как ниобий, хром, молибден, рений, ванадий и другие, возникает метастабильная ш-фаза. Образование ш-фазы оказывает большое влияние на свойства сплавов, которое выражается в повышении твердости и снижении пластичности. Л. А. Петровой [1] исследована стабилизация -твердого раствора в сплавах циркония с 9 и 10 вес.% ванадия после закалок с 900—1150° методами рентгеновского и металлографического анализов. Исследования показали, что в сплавах наряду с линиями -фазы присутствуют еще линии со-фазы, следовательно, в сплавах циркония с ванадием невозможно получить метастабильную -фазу закалкой. Относительно тантала в литературе имеются разноречивые данные. В. Е. Емельянов и др. [2] сообщают, что рентгеновский фазовый анализ показал в системе цирконий — тантал наличие только двух фаз а-циркония и твердого раствора на основе тантала, стабилизировать -фазу циркония при комнатной температуре не удается >. Однако Д. Е. Вильямс и др. [3] при обсуждении результатов исследования диаграммы состояния цирконий — тантал приводят значения параметров решетки для твердых растворов на основе -цирконня и тантала в сплавах, закаленных с температур 1300 и 1500°. Ни в одной из описанных работ нет указаний на наличие метастабильной -фазы в сплавах циркония с танталом. Вследствие того, что малолегированные сплавы циркония с танталом и ванадием могут быть использованы в качестве конструкционных материалов, а о-фаза оказывает резко неблагоприятное влияние на пластические свойства сплавов, нам представилось интересным изучить появление ю-фазы как в двойных, так и в тройных сплавах циркония с танталом и ванадием, а также выяснить возможность сохранения закалкой в этих сплавах -твердых растворов. [c.98]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    По ГОСТу наличие ванадия в марках сталей обозначают буквой Ф. Например, сталь 60СГХФА — пружинная сталь, содержащая 0,6% С, до 1% 51, Мп, Сг и V. Буква А означает улучшенную сталь. Ниобий и тантал нашли применение позднее, когда появилась потребность в нержавеющих и жаропрочных сталях. Так, например, нержавеющая сталь Х18Н10НБ содержит 18% Сг, 10% N1 и до 1% ЫЬ (последний в сплавах черной металлургии обозначается НБ). В настоящее время разработаны высокопрочные при высоких температурах сплавы на основе ЫЬ с молибденом, цирконием в качестве легирующих компонентов. Однако эти сплавы очень дороги. [c.335]

    Рекомендации по легированию, которые приведены ниже, разработаны исходя из требования, что скорость коррозии сплава не должна превышать 0,1 мм/год, т.е. соответствовать 1 баллу коррозионной стойкости. Сплавы указанных составов предназначены для работы в кипящей кислоте эксплуатация сплавов при более низкой температуре обеспечивает дополнительный запас надежности. Выбор той или иной основы сплавов тугоплавких металлов и степени их легирования вследствие сзоцественно различающейся стойкости этих металлов во многих случаях приобретает решающее значеш1е. Конкретную стоимость юго или иного металла указать трудно, так как она непостоянна и зависит от многих обстоятельств технологического и конъюнктурного плана. В данном случае достаточно привести примерное соотношение стоимости тугоплавких металлов. Оно следующее Nb в 2 раза дешевле Та, W и Мо — в 10 раз, V — в 5 раз, Ti — в 100 раз. Однако необходимо учитьшать также и плотность тугоплавких металлов (см. табл. 1). Все указанные тугоплавкие металлы, кроме W, легче, чем Та. Весьма округленно плотность относительно тантала равна —4 для Ti, —3 для V, —2 для Nb, —1,5 для Мо, 1 для W. Следовательно, при изготовлении изделия (детали) не из тантала, а из титана его стоимость будет меньше в 400 раз, из ванадия — в 15 раз, из ниобия — в 4 раза, из молибдена — в 15 раз, из вольфрама - в 10 раз. [c.81]

    БЕРЙЛЛИЯ СПЛАВЫ — сплавы на основе бериллия. Относятся к легким сплавам. В пром. масштабе впервые получены в середине 20 в. в США и Германии. Поскольку технически чистый бериллий — хрупкий металл, сплавы легируют, повышая их пластичность. По степени растворимости в бериллии легирующие элементы подразделяют на малорастворимые (алюминий, кремний, бор и др.), слаборастворимые (углерод, азот, молибден, вольфрам, цирконий, тантал, ниобий, ванадий, хром, магний и др.) и хорошо растворимые (никель, железо, кобальт, медь, платина). В зависимости от характера упрочнения бериллиевой фазы (твердорастворное или дисперсное) различают Б. с. малодегированнце [c.134]

    Сплавы ниобия и тантала. Поскольку МЬаОб — полупроводник п-типа с анионными вакансиями, можно было бы полагать, что добавка в ниобий более высоковалентного металла (в области параболического окисления) должна привести к снижению скорости окисления. Однако анализ изменения концентрации и подвижности анионных вакансий в МЬдОа при легировании титаном, ванадием, хромом и алюминием показывает, что в связи с высокой концентрацией дефектов, отличающейся лишь на два порядка от концентрации свободных электронов в металлах, и возможным изменением подвижности при изменении их концентрации подход к жаростойкому легированию ниобия с позиции теории Вагнера неприменим. Априорный выбор добавок в данном случае затруднен. Важную роль играет размер иона легирующего элемента. При образова НИИ однофазной окалины легирование ниобия металлами, образующими ионы меньшего, чем ион N5 , размера, может привести к сжатию ячейки на основе ЫЬзОь, снижению объемного отношения и торможению диффузии ионов О в оксиде. Например, легирование ниобия цирконием, имеющим больший, чем у радиус иона (0,79и 0,69-10 м соответственно), ускоряет окисление ниобия, а V, Мо и Сг (с радиусом ионов 0,59 0,62 и 0,63-10 м соответственно) — замедляют. [c.427]

    Твердыми сплавами называют сплавы на основе карбидов тугоплавких металлов вольфрама (W , Wa ), титана (Ti ), ванадия (V ), тантала (ТаС), ниобия (NL ) и хрома (СггСз, Сг,Сз, СгйС). [c.249]

    Как будет показано в разделе о применении, мелаллы ванадий, ниобий, тантал и сплавы на их основе — важнейшие материалы современной техники. [c.139]

    Многие /-элементы ГУ-УП групп используются как легирующие добавки для улучшения качества сталей. В состав сталей их обычно вводят в виде ферросплавов (сплавов с железом), например, феррохрома, ферромарганца, ферротитана, феррованадия и др. Легирование ими придает сталям ценные качества, например коррозионную стойкость (хром, марганец, титан), твердость и ударная вязкость (цирконий), твердость и пластичность (титан), прочность, ударная вязкость и износостойкость (ванадий), твердость и износостойкость (вольфрам), твердость и ударная вязкость (марганец), жаропрочность и коррозионную стойкость (молибден, ниобий). Марганец используется как раскислитель стали. Все более широкое применение получают эти металлы и их сплавы, как конструкционные, инструментальные и другие материалы. Так, титан и его сплавы, характеризуемые легкостью, коррозионной устойчивостью и жаропрочностью, применяются в авиастроении, космической технике, судостроении, химической промышленности и медицине. В атомных реакторах используются цирконий (конструкционный материал, отражающий нейтроны), гафний (поглотитель нейтронов), ванадий, ниобий и тантал. Вследствие высокой химической стойкости тантал, ниобий, вольфрам и молибден служат конструкционными материалами аппаратов химической промышленности. Вольфрам, молибден и рений, как тугоплавкие металлы, используются для изготовления катодов электровакуумных приборов и нитей накаливания термопар и в плазмотронах. Вместе с тем при высоких температурах вольфрам и молибден окисляются кислородом, причем образующиеся при высокой температуре оксиды не защищают эти металлы от коррозии, поэтому на воздухе они не жаростойки. Вольфрам служит основой сверхтвердых сплавов. Хромовое покрьггие придает изделиям декоративный вид, повышает твердость и износостойкость. [c.373]

    В книге рассматриваются методы получения и и свойства новых конструкционных химически стойких материалов, применяемых в настоящее время (сплавы на основе титана и циркония), а также материалов, которые в ближайшем будущем найдут широкое применение благодаря своим ценньм свойствам (сплавы на основе молибдена, тантала, ниобия, ванадия). [c.2]

    Никель образует твердые растворы со многими элемен ами, что обусловливает значительные возможности достижения высокой жаропрочности сплавов на его основе. Тем-1ературная зависимость растворимости некоторых элемен-ов приведена на рис. 192. При 1000°С кобальт, железо, 1арганец и медь образуют неограниченные твердые раст-юры, а такие тугоплавкие металлы, как хром, вольфрам, лолибден, тантал, ниобий, ванадий, — ограниченные твер-1,ые растворы с различными об-[астями гомогенности. Раствори-юсть при 1000°С таких элементов, как титан и алюминий, со- тавляет соответственно 10 и 7 %. [c.323]


Смотреть страницы где упоминается термин Ниобий и сплавы на его основе, тантал, ванадий: [c.262]    [c.231]    [c.798]    [c.528]    [c.593]   
Смотреть главы в:

Электрохимия Том 9 -> Ниобий и сплавы на его основе, тантал, ванадий




ПОИСК





Смотрите так же термины и статьи:

Ниобий см Ванадий

Ниобий тантале

Сплавы ниобия

Сплавы с ванадием

Тантал



© 2024 chem21.info Реклама на сайте