Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебра действие на анионы

    Один и тот же центр может выполнять несколько функций, в частности таким свойством обладают анионные центры, участвующие не только в анионном обмене, но в адсорбции и электронном обмене. Работа некоторых катионных центров связана с изменением валентности катиона (например, Си+ч= Си +), и это позволяет им активно участвовать в процессах адсорбции и электронного обмена по окислительно-восстановительному механизму [5]. Наибольшей каталитической активностью обладают соли металлов переменной валентности (кобальта, марганца, железа, никеля, хрома, серебра, меди), действующие по описанному механизму (см. гл. 2). [c.196]


    Так как кислоты представляют соли гидроксония, то растворение металлов в кислотах представляет частный случай этого правила рядов вытесняется водород. Однако кислоты переводят осадок в раствор целиком (вследствие необратимости реакции), а соли металлов переводят в раствор или катион, или анион. Это позволяет проводить селективное растворение. Например, сульфат свинца растворяется в растворе карбоната натрия, вытесняя сульфат-ион в раствор. При взаимодействии осадка сульфата свинца с цинком выделяется свободный свинец и сульфат-ион переходит в раствор. Карбонат свинца легко растворим в кислотах. При этом РЬ " и сульфат-ион переходят в раствор. Если же растворять осадок сульфида свинца (П) действием раствора нитрата серебра, то сульфид-ион осаждается ионом серебра, а катион свинца переходит в раствор. Применяя реакции комплексообразования, можно растворять соли, не растворимые в кислотах например, сульфид мышьяка (1П) растворяется в растворе сульфида натрия, образуя тиоарсенит натрия. Осадок хлорида серебра при взаимодействии с раствором сульфида натрия превращается в менее растворимый сульфид серебра. [c.132]

    Предположим, что на этих электродах выделяются соответствующие металлы. В первом случае, т. е. при выделении серебра, разряду его положительных ионов способствуют силы притяжения, существующие между ними и анионами, адсорбированными катодом, подобно тому, как положительно заряженная сетка ускоряет движение электронов в трехэлектродной радиолампе. Небольшому смещению потенциала в отрицательную сторону отвечает значительная скорость разряда. Поэтому даже при высоких плотностях тока перенапряжение остается незначительным. Во втором случае, т. е. при выделении цинка, не только отсутствует ускоряющее действие анионов, но может даже появиться тормозящий эффект посторонних катионов, если они присутствуют в растворе наряду с ионами цинка. Появление тормозящего эффекта легко понять, если учесть, что к моменту наложения тока в двойном слое присутствуют ионы металла и посторонние катионы, например ионы водорода. При включении тока ионы металла (в условиях, когда его выделение является основным катодным процессом) начнут разряжаться и их число в двойном слое уменьшится, в то время как число посторонних катионов, не подвергающихся разряду, останется неизменным. Убыль положительных зарядов должна быть восполнена за счет вхождения в двойной слой новых катионов, а ими могут быть как ионы металла, так и посторонние катионы. Таким образом, при смещении потенциала в отрицательную сторону (увеличении отрицательного заряда поверхности металла) доля разряжающихся катионов в двойном слое уменьшится, а доля посторонних катионов и общий положительный заряд катионной сетки увеличатся. Поступление катионов металла будет, таким образом, затруднено, и для обеспечения процесса разряда потребуется большее перенапряжение. При разряде комплексных анионов, как это, по-видимому, имеет место в случае цианистых электролитов серебрения и цинкования, соотношения меняются на обратные. Анионная сетка оказывает теперь уже не активирующее, а тормозящее действие. [c.444]


    Действие растворимых солей серебра на анионы [c.155]

    Обсуждение. Эта реакция связана с тем, что хлористый и бромистый натрий очень слабо растворяются в ацетоне. Она основана ) на изучении соотношения между структурой и скоростями реакций большого числа галоидных соединений [59] ее ценность, как показали многочисленные исследования [60, 61], заключается в том, что реакция протекает только в одном направлении и состоит в действии аниона (иона иода) на атом углерода, связанный с атомами хлора или брома. Поэтому в отношении ацетонового раствора иодистого натрия первичные галоидные соединения обладают большей реакционной способностью, чем вторичные. Третичные галоидные соединения реагируют наиболее медленно. Это расположение по реакционной способности совершенно противоположно тому, которое наблюдается при действии спиртового раствора азотнокислого серебра, так как последнее может действовать на галоидопроизводные различными путями [61]. [c.145]

    На примере реакции фенола с фурфуролом, которая приводит к образованию полимеров, построенных так же, как и фенол-формальдегидные [24], было исследовано каталитическое действие хлоридов меди, алюминия, олова, железа, ртути и нитратов бария, алюминия, марганца, железа, хрома, никеля, меди, свинца, цинка, тория, уранила, ртути, серебра, аммония, натрия, калия, кальция, магния, кобальта, кадмия, а также сульфата железа и иода [160,161]. При этом оказалось, что каталитическая активность солей соответствует склонности катионов к ионизации. Ускоряющее действие анионов изменяется, убывая в ряду от хлоридов к сульфатам и к нитратам. [c.433]

    Катионы серебра, ртути и свинца имеют большую электроотрицательность (1,4—1,6), чем катионы кальция и бария (1,0). Это способствует образованию малорастворимых соединений серебра, ртути и свинца с рядом анионов (С1 , Вг , 1 , N , 8С[Ч ). Катионы Ag+, Hg , РЬ + оттягивают к себе электроны от соответствующих анионов (поляризующее действие). Катионы Са-+ и Ва-+— более слабые поляризаторы и образуют осадки, содержащие ионные кристаллические решетки. Третью группу составляют неполяризуемые анионы (нитрат, нитрит, ацетат). [c.243]

    Дальнейшие опыты показали, что коагулирующая сила ионов одной и той же валентности возрастает с увеличением радиуса иона. Иначе говоря, катионы или анионы одной и той же валентности по своему коагулирующему действию располагаются в обычный лиотропный ряд. Для одновалентных катионов и отрицательно заряженных частиц золя иодида серебра такая закономерность видна из следующих данных (по Л. К. Лепинь и А. В. Бромбергу)  [c.288]

    Бромид-ионы являются анионами бромоводородной кислоты НВг. Кислота по силе аналогична соляной кислоте. Бромид-ионы бесцветны. Соли бромоводородной кислоты хорошо растворимы в воде, кроме малорастворимых солей серебра, ртути и свинца. Бромиды близки по свойствам к хлоридам, но менее устойчивы к действию окислителей. [c.186]

    Отношение анионов к действию солей бария, кальция и серебра [c.147]

    На раствор, содержащий С1 и 1", действуют раствором нитрата серебра. Какая из сол й — Ag l (ПР 10 ) или Agl (ПР 10- ) будет осаи<даться в первую очередь При какой концентрации осаждающегося первым аниона качнется осаждение другого аниона, если начальные концентрации обоих анионов равнялись 0,01 г-ион/л  [c.341]

    Легкость заместительного Г. действием галогенов уменьшается в ряду F С1 > Вг > 1. Напр., для гомолитич. гало-генирования метана до СНзНа изменение энтальпии в указанном ряду составляет соотв. -418, -105, -31 и -1- 54 кДж/моль. Из-за высокой зкзотермичности фторирование проводят при низких т-рах и разбавлении F азотом, а чаще вместо F используют фторсодержащие соединения. Иодирование действием 1 , как правило, идет с трудом и к тому же резко замедляется из-за обратимости р-ции. Поэтому процесс ведут обычно в присут. окислителей (напр., HgO, HNO3), окисляющих выделяющийся HI до 1 , либо солей серебра, связывающих анион I в виде нерастворимой соли и одновременно обеспечивающих генерирование l . [c.489]

    И). Какие соединения переходят в раствор при действии NH4OH на смесь солей серебра, образованных анионами первой группы  [c.355]

    Ряд соединений серебра, из которых наиболее достопримечательным является иодид серебра, характеризуется беспорядком , не соответствующим привычной для нас классификации дефектов по Френкелю или по Шоттки. Строго говоря, само понятие точечного дефекта для них не имеет смысла, так как размеры отдельной области, на которую распространяется дефектность структуры, видимо, распределены статистически в более или менее широком интервале. В то же время дефектом может быть, например, простое перераспределение катионов по возможным позициям, которые нельзя квалифицировать как узлы решетки или междоузли я . Это своеобразие иодида серебра, безусловно, связано как с резкихм различием в размерах катиона и аниона, так и с их химическими особенностями, - в частности с поляризующим действием катиона серебра на анион иода. Поэтому целесообразно выделить иодид серебра из общей массы галогенидов и рассмотреть его в отдельности. [c.112]


    При больших степенях покрытия поверхности ионами галогенов скорость окисления этилена уменьшается, а селективность его превращения в этиленоксид увеличивается. При степени покрытия поверхности ионами селена 15% окисление этилена полностью затормаживается. В случае введения электроотрицательных добавок в серебро имеет место типичное явление модифицирования катализаторов. Промотирующее действие анион- ных добавок частично является результатом оптимизации проч- ности связи кислорода с сереором. Так, вводимые в серебря- ный катализатор ионы селена несколько уменьшают теплоту I адсорбции кислорода, с чем, по-видимому, и связано их промо- I тирующее действие. f Структуры, образующиеся при адсорбции кислорода на по- верхности серебра, зависят от степени покрытия поверхности ионами хлора. В работе [60] установлено, что в зависимости [c.37]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]

    Адсорбция. С учетом различных механизмов действия (адсорбции, образования соединений с отделяемыми компонентами и т. д.) в качестве коллекторов были исследованы галогениды и другие малорастворимые соли серебра. Известно, что свежие осадки AgX имеют поверхностный заряд, знак которого зависит от заряда ионов, участвующих в реакции осаждения и находящихся в избытке, т. е. отрицательный при избытке ионов X , сорбированных осадком, и положительный при избытке Ag+. Осадок AgX — эффективный сорбент наряду с ионами элементов на его поверхности могут удерживаться ионы различных молекул и полярные вещества на этом принципе основано, е частности, применение адсорбционных индикаторов в аргентометрическом титровании по методу Фаянса. При этом катионы находятся на поверхности отрицательно заряженных осадкон, анионы — на поверхности положительно заряженных. [c.423]

    Цианат серебра AgO N — труднорастворимая соль, произведение растворимости которой составляет [607]. При действии избытка анионов ОСМ образуется комплексный анион Ай(0СМ)2 [1146], константа устойчивости которого равна 10 > [742]. [c.28]

    Первый и второй из названных классов содержат солеобразные соединения, в которых углерод входит в состав аниона (например, Са2+(С = С) ]. Эти карбиды под действием воды выделяют метан или ацетилен соответственно (в смеси с водородом и другими углеводородами). Некоторые из них неустойчивы и проявляют взрывчатые свойства (ацетиленид серебра Aga s). Температуры плавления карбидов солеобразного типа высоки и для некоторых (карбид алюминия) превышают 2800 С. [c.291]

    Если же одновременно разрушаются кислородсодержащие анионы, то реакция протекает медленно, например окисление хлорат-, перхлорат-, перманганат-, хромат-ионами. То же наблюдается в случае кислородсодержащих восстановителей. Потенциал таких окислительно-восстановительных систем непостоянен и зависит от pH, температуры, катализаторов. Пероксодисульфат-ион очень слабый окислитель в кислой среде. Катализатор (Ag , Со +, Hgi+) значительно повышает потенциал этой реакции (до 4-1,98 б) и делает пероксодисульфат-ион сильнейшим окислителем. В отсутствие катионов серебра ион SaOa не окисляет Се " до Се +, в присутствии же Ag+ реакция намного ускоряется. Каталитическое действие Ag+ обеспечивает окисление Мп + ионами SaO до МпО . При этом образуется черная перекись серебра AgaOa. При разложении ее образуется AgO (И. А. Казарновский, 1951). Перекись серебра быстро окисляет Mir и вновь выделяется Ag в исходном количестве  [c.116]

    Устаноппте, как действует раствор AgNOg на испытуемый раствор. Если oi прибавления раствора AgNOn осадок ие образуется, можно сделать вывод, что в анализируемом растворе отсутствуют анионы,образующие осадок с ионамн серебра, т. е. все анионы И группы, кроме SO "-иоиов. [c.420]

    В процессе осаждения на поверхности осадка всегда адсорбируются различные ионы. Адсорбируются главным образом те ионы, которые находятся в избытке в растворе. Так, если осаждать ионы серебра хлорид-ионами, то на поверхности осадка Ag l адсорбируются главным образом ионы серебра, которые имеются в избытке. Наоборот, при осаждении хлорида прибавлением нитрата серебра на поверхности адсорбируются главным образом ионы хлорида, так как в этом случае они будут в избытке. Рстественно, что осадок будет адсорбировать и другие ионы, имеющиеся в растворе, например ионы натрия или нитрата, однако в первую очередь, как правило, адсорбируются ионы, входящие в состав малорастворимого соединения. Адсорбированньге ионы кристаллической решетки называют первично адсорбированными ионами. Вследствие адсорбции ионов поверхность осадка приобретает положительный пли отрицательный заряд в зависимости от того, какой ион, входящий в состав осадка имеется в избытке. Под действием этого заряда в зоны раствора, непосредственно примыкающие к частицам осадка, притягиваются противоположно заряженные ионы, которые называют про-тивоионами. Эти противоионы удерживаются слабее по сравнению с первично адсорбированными ионами. Слой противоионов содержит также некоторое количество других катионов и анионов. Адсорбированными ионами на осадке будут преимущественно те ионы, которые имеют наибольший заряд. Если же заряды ионов одинаковы, то в первую очередь адсорбируются те ионы, которые образуют менее растворимые соединения с первично адсорбированными ионами. [c.188]

    Персульфат аммония или калия [351, 541, 656] при действии на соль Мп(И) образуют МпОг и в небольшом количестве анионы Мп04, но в присутствии ионов серебра — только МПО4  [c.28]

    К числу наиболее распространенных реагентов химической промышленности принадлежат серная, фосфорная, азотная, соляная и уксусная кислоты. Они используются в производстве других реактивов, очистке металлов, нанесении металлических покрытий и в целом ряде других производств. Когда кислоты используются, например, для протравливания металлических поверхностей, остаются растворы, содержащее неиспользованную кислоту и ионы таких цветных металлов, как медь, ванадий, серебро, никель, свинец. Эти весьма обильные отходы, которые по традиционным технологическим схемам обычно попадали в ближайшие водоемы, не только представляют большую экологическую опасность, но и содержат исключительно ценное вторичное сырье. В последнее время были разработаны безотходные производственные процессы, рационально использующие такие отходы. Кислоты отгоняют при нагревании, причем промежуточная очистка пара позволяет в ряде случаев достигнуть более высокой степени чистоты, чем в традиционном основном производстве тех же кислот. Остающийся раствор, содержащий 1 яжелые металлы, собирают в специальные емкости, откуда металлы выделяются действием солей, содержащих анионы, селективно осаждающие ионы металлов. Далее металлы могут быть извлечены из осадков обычными методами и использованы вторично. [c.485]

    АГетоды гравиметрии применяются сравнительно редко, так как подходящие для количественного анализа реакции осаждения немногочисленны п недостаточно специфичны, а главная весовая форма — бромид серебра — имеет невысокую фотохимическую и химическую стабильность к действию восстановителей. Однако при соблюдении определенных условий осаждеппя (с, 20) можно получить очень точные результаты определения бромид-ионов, а также соединений с другими степенями окисления брома, если перевести пх в бромиды. Прежде всего речь идет об отсутствии в анализируемой смеси сильно гидролизующих (Bi(HI), Sb(HI) и Sb(V), Fe(HI)) и комнлексообразующих (Hg(II), d(II)) катионов, а также анионов, серебряные соли которых осаждаются из азотнокислого раствора (С1", J", N", S N , S , SjOg , lFe( N)e] ", [Fe( N)o] "). He должны присутствовать и восстановители, способные выделить металлическое серебро из бромида (например, гипофосфиты). [c.71]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Гипонитрит серебра AgaNjOa мало растворяется в воде произведение растворимости равно 1,39 10 . При действии аммиака переходит в раствор в виде аниона AgNHgNjOa, константа диссоциации которого па Ag+, NH3 и N2O2 составляет 4-10" [1337]. [c.17]

    Известны комплексные соединения серебра в степени окисления 4-2 с пиридинкарбоновыми кислотами. Общий состав этих соединений выражается формулой АдА-иН О, где А - — двухзарядный анион пиридиндикарбоновой кислоты [551, 552]. Эти соединения получаются при введении пиридинкарбоновой кислоты и АдКОз концентрированный холодный раствор персульфата натрия и длительном перемешивании смеси. Комплексы разлагаются при действии кислот и щелочей. [c.31]

    Аддукты 4,6-динитробензофуроксана с гидроксидами калия, натрия и аммония получались при действии иа 4,6-динитробензофуроксан водными растворами щелочных карбонатов или спиртовым раствором аммиака катион щелочного металла легко замещался на катион серебра обменной реакцией с азотнокислым серебром. Эти аддукты представляют собой интенсивно желтые или красные кристаллические, вещества, очень взрывоопасные. Они вошли в литературу под названием соли 4,6-динитробензофуроксана . Впервые получивший их в 1899 г. Дрост [203] высказал мнение, что катион в них занимает место протона, отщепившегося непосредственно от атома углерода, и, следовательно, анион построен по типу 24. Этой формулы придерживалось затем большинство исследователей, и даже в 1954 г. в ее пользу были истолкованы ИК-спектроскопические данные [138]. Структура 24 вместе с тем вызывала настороженность, так как соли 4,6-динитробензофуроксана , по результатам элементного анализа, содержали до одной молекулы воды [203, 465, 466], которая не удалялась при нагревании, например, калиевой соли , вплоть до температуры разложения -1бО°С [241]  [c.330]

    В несеребряных светочувствительных материалах функции галогенидов серебра выполняют другие соединения. Так, производное антрахинона, в частности антрахинонсульфонаты натрия или калия [94], восстанавливаясь под действием света до анион-радикала антра-семихинона, формирует неметаллическое латентное (фактически видимое, поскольку анион-радикалы антрасемихинонов окрашены) изображение. При обработке его солями А , или последние восстанавливаются до металлов, регенерируя исходный антрахинон и образуя каталитически активное металлическое изображение, готовое к так называемому физическому проявлению растворами солей металлов. [c.48]

    Взаимодействие спиртов с галогеноводородными кислотами представляет собой реакцию замещения, в которой активной частицей является сопряженная кислота спирта R—ОН2- Можно предполагать, что этот процесс будет аналогичен реакциям замещения атомов галогенов в органических галогенпроизводных при действии нитрата серебра и иодид-иона (опыты 16 и 17). Влияние структуры молекулы на реакционную способность органических соединений в этих реакциях совершенно одинаково. Так, первичные спирты не реагируют в заметной степени с соляной кислотой при обычной температуре даже в присутствии хлорида цинка. Это связано, с одной стороны, с тем, что хлорид-ион — слишком плохой нуклеофильный агент для того, чтобы эффективно участвовать В сопряженной реакции замещения, и, с другой стороны, со слишком малой стабильностью первичного карбониевого иона — промежуточного соединения при замещении по карбоний-ионному механизму. Бромистый и иодистый водород, имеющий более активные нуклеофильные анионы, реагирует с первичными спиртами значительно энергичнее. При этом иодистый водород оказывается более сильным нуклеофильным агентом. Именно такое соотношение способности к нуклеофильному замещению следует ожидать для этих веществ в гидроксилсодержащих растворителях. [c.174]


Смотреть страницы где упоминается термин Серебра действие на анионы: [c.79]    [c.9]    [c.489]    [c.155]    [c.455]    [c.182]    [c.574]    [c.471]    [c.603]    [c.74]    [c.153]    [c.498]    [c.364]    [c.403]    [c.124]    [c.70]    [c.21]    [c.24]    [c.25]    [c.30]   
Качественный химический анализ (1952) -- [ c.553 ]




ПОИСК





Смотрите так же термины и статьи:

Серебра соли, действие на анионы II групп



© 2024 chem21.info Реклама на сайте