Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изобутилен в хлористых алкила

    Реакции алкилирования ароматических соединений имеют большое промышленное и препаративное значение. В промышленности в качестве алкилирующих агентов чаще всего применяют алкены, несколько реже— хлористые алкилы. Если в молекуле имеется несколько атомов хлора, то. обычно они замещаются все. Напишите уравнения каталитического алкилирования бензола а) 1-бутеном, б) бромистым этилом, в) изобутиленом, г) 1,2-дихлорэтаном, д) хлороформом. Назовите полученные вещества. По какому механизму идут реакции алкилирования  [c.151]


    Полное использование остаточной воды при полимеризации изобутилена позволило применить этот метод для полной осушки системы стирол — четыреххлористый титан — хлористый метилен, так как при применении любых обычных методов осушки реагентов в этой системе всегда происходила полная полимеризация. При введении стирола в смесь изобутилен — четыреххлористый титан — хлористый метилен, в которой полимеризация прекратилась вследствие израсходования воды, он не полимеризовался. Не протекала полимеризация и при введении какого-либо хлористого алкила. Добавление воды приводило к быстрой сополимеризации. Другие алкилгалогеииды, взятые в качестве растворителей, ведут себя подобно хлористому метилену. Опыты проводили при помощи адиабатической методики [361 между —30 и 5°, после чего был сделан вывод, что при этих температурах указанные хлористые алкилы не являются сокатализаторами для полимеризации стирола под действием четыреххлористого титана даже в среде хлористого алкила, в отличие от поведения их в присутствии четыреххлористого олова. Это означает, что равновесие [c.211]

    Аналогичная реакция пропилена проходит лишь очень медленно. Изобутилен, оказывается, является эффективным ингибитором для реакции присоединения этилена, ио-видимому вследствие захвата радикалов, являющихся no irre-лем цепи, путем присоединения или взаимодействия с аллильными связями С—П. Однако в жидкой фазе в присутствии перекиси бензоила хлористый водород присоединяется к избытку тре/п-бутилэтилена с образованием и результате до 24% иервичного хлористого алкила [24], причем радикальный и полярный процессы, по-впдимому, конкурируют. Однако цепи получаются короткими, поэтому нетрудно понять, почему первые исследователи не смог- [c.238]

    Таким образом, при алкилировании дифенилолпропана алкил-галогенидами в присутствии хлористого алюминия и при алкилировании изобутиленом в присутствии кислотных конденсирующих катализаторов (серная кислота, ВРз и другие) конкурирующей реакцией является распад дифенилолпропана на фенол и п-изопропенилфенол с последующим их диспропорционированием, полимеризацией и ал-килированием. Приведенные в литературе данные по выходам ал-килзамещенных дифенилолпропана весьма разноречивы. Преобладающей реакцией, по-видимому, является распад дифенилолпропана, и, следовательно, нельзя ожидать достаточно хорошего выхода алкилзамещенных дифенилолпропана. Значительно более обнадеживающими являются результаты алкилирования изобутиленом в присутствии более мягкого катализатора — фенолята алюминия, на котором был достигнут выход 65%. Алкилирование дифенилолпропана диизобутиленом на всех испытанных катализаторах протекает плохо. [c.22]


    Согласно последним патентным данным [115, 149 ], алкил-1,3-диоксаны могут быть получены при конденсации формальдегида с изобутиленом и триметилэти-леном в присутствии хлористого цинка при 40—150°. [c.42]

    Как видно из приведенных данных, Н2504, ВРз и некоторые другие катализаторы ориентируют вступающую алкилирующую группу главным образом в /гара-положение. Феноляты алюминия, окись алюминия, напротив, способствуют образованию орто-замещенных алкилфенолов. Преимущественно о-алкилфенолы образуются также при термическом алкилировании фенолов олефинами (в отсутствие катализаторов). Однако четкой границы между орто- и пара-направляющими алкилирование катализаторами провести нельзя. В определенных условиях они могут менять свою селективность. Так, Н2504, которая является типичным -алкили-рующим катализатором, рекомендуется [21] для получения о-трет-бутилфенола при непрерывной ее дозировке в реакционную массу в процессе алкилирования. Хлористый алюминий также способствует /г-алкилированию и обычно применяется в реакциях Фриделя— Крафтса, но вместе с тем описан [22] катализатор, приготовленный из фенола и хлористого алюминия с грег-бутил хлоридом в качестве промотора, обладающий избирательностью о-алкилирования. Селективность процесса может быть изменена н в отношении диалкилпроизводных. Так, указанный катализатор [22] в безводной среде дает продукт [23], совершенно не содержащий 2.6-диалкилфенола, однако в присутствии даже следов воды (6,2-10- —34-10- моля) выход 2,6-ди-грег-бутилфенола прн алкилировании фенола изобутиленом достигает 85—92%. [c.217]

    Ренер, Запп, Спаркс [845] исследовали сополимеризацию стирола с изобутиленом при низких температурах (—30—95°) в среде хлористого метила в присутствии катализатора Фриделя — Крафтса. В полученных сополимерах содержится до 87 вес. % связанного стирола. С увеличением вискозиметриче-ского среднего молекулярного веса от1 10 до4-10 процент стирола убывает с 80—87 до 30. Определены константы сополимеризации при ламинарном и турбулентном перемешивании полиме-ризуемой смеси. Описаны непрерывный процесс сополимеризации стирола с изобутиленом [846], метод сополимеризации винилхлорида и стирола [833], стирола с неполимеризующимися веществами (например, ацетонафтеном, хлорпарафинами [847] и алкил- или галоидозамещенными в ядре стиролами [848—851], а-метилстирола и стирола [849, 850, 851]. [c.216]

    Присоединение парафинов либо циклопарафинов к оле-финам, особенно к этилену и изобутилену, катализированное кислыми реагентами, например хлористым алюминием, фтористым бором и т. п., является катионоидным алкилированием такого же типа, как и этилирование бензола. При рассмотрении этого процесса будет также подробно разобрана роль катализатора типа хлористого алюминия (см. стр. 96). Этилеп и изобутилен легче всего присоединяют парафины с третичным углеродным атомом [462, 463], например изобутан, поскольку атом водорода, связанный с третичным углеродом, может отщепляться в виде Н-аниона. Названные выше катализаторы, которые в рассматриваемом случае приобретают функции переносчиков протонов и С-катионов, не проявляют активности, если в системе не присутствуют следы соответствующего галогеноводорода или воды. Если в качестве катализатора применять хлористый алюминий, алки-лирование сопровождается изомеризацией продуктов реакции, их разложением на новые олефины, алкилированием этих последних и, наконец, полимеризацией как исходного олефина, так и вновь образующихся [464]. Эти осложнения отпадают при работе с фтористым бором, так как этот катализатор не способствует полимеризации, особенно в присутствии небольшого количества тонкоразмельченного никеля [462]. С увеличением количества фтористого бора увеличивается выход продуктов алкилирования. Как с фтористым бором, так и хлористым алюминием, процесс ведут при температуре около 20°. В случае такого катализатора, как концентрированная серная кислота, температура не должна превышать Ч-Ю° при 27—46° алкилируют в присутствии безводного фтористого водорода [465]. [c.94]

    Как уже отмечено на стр. 279, гидрид трифенилолова восстанавливает бромистый аллил в пропилен. Аналогично хлористый изобутилен и гидрид трифенилолова дают изобутен и хлористое трифенилолово [71]. Взаимодействием бромистого н-бутила и бромбензола с гидридом трифенилолова получены [71] бромистое трифенилолово и бутан или бензол соответственно. Восстановление оловоорганическими гидридами алкил- и арилгалогенидов исследовано рядом авторов [29, 33, 59, 60, 72—82]. По сравнению с другими восстановителями гидриды олова имеют некоторые преимущества, что позволяет использовать эти соединения в препаративной органической химий. Реакции восстановления представляют значительный интерес и для изучения химических свойств оловоорганических гидридов. [c.468]


Смотреть страницы где упоминается термин Изобутилен в хлористых алкила: [c.434]    [c.879]    [c.103]    [c.181]    [c.19]   
Катионная полимеризация (1966) -- [ c.142 , c.145 ]




ПОИСК





Смотрите так же термины и статьи:

Изобутилен

Хлористые алкилы



© 2025 chem21.info Реклама на сайте