Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энзимология сравнительная

    В настоящее время теоретические и практические достижения энзимологии используются в решении многих проблем биохимии и молекулярной биологии, включая их сравнительное и эволюционное рассмотрение. Под знаком молекулярной энзимологии,- говорил на П1 Всесоюзном биохимическом съезде (1974) А.Е. Браунштейн,-развивается и встречное течение -реконструкция или интеграция, восходящая от молекулярного яруса к высшим уровням структурно-функциональной организации живого и пронизывающая весь комплекс актуальных проблем биологии и медицины . [c.114]


    Успехи такого масштаба отодвигают в настоящее время на задний план генетические работы, непосредственно не связанные с этими основными проблемами. По сравнению с достижениями в изучении ДНК успех генетических исследований фенольных соединений следует считать незначительным. Более того, вероятно, что до тех пор, пока не будут расширены подходы, из таких исследований можно получить сравнительно мало информации, представляющей общебиологический или генетический интерес. В этой главе рассматриваются классические работы по генетике фенольных соединений и некоторые работы последних лет. До настоящего времени большинство исследований по генетике фенолов было посвящено многоатомным фенолам флавоноидного типа, т. е. водорастворимым пигментам цветков. Целью исследований обычно было описание в классических терминах Менделя генетических механизмов образования окрасок цветков, присущих отдельным видам или родам. В ранних классических работах и позднее, основываясь на данных такого рода исследований, фенотипические эффекты связывали со специфическими химическими изменениями в флавоноидных соединениях. В других исследованиях были открыты некоторые механизмы, управляющие количественным наследованием этих пигментов, и, наконец, в них часто содержался анализ генного управления характера распределения некоторых флавоноидных соединений. Независимо от этого были изучены пути биосинтеза флавоноидных структур в исследованиях с помощью меченых атомов. Небольшое число работ посвящено изучению ферментов биосинтеза флавоноидов, хотя в течение нескольких лет успешно ведутся интенсивные исследования по энзимологии синтеза ароматических веществ в микроорганизмах. По мнению автора, генетические исследования до сих пор не дали (или дали очень мало) определенных данных, которые позволили бы точно описать отдельные стадии биосинтеза фенолов [c.140]

    Из 102 элементов периодической системы в живых организмах обнаружено не менее 60. Многие из них относятся к металлам и встречаются в живых клетках в виде разнообразных комплексных соединений. Уже давно стало ясно, что металлы, даже встречающиеся в живых тканях в крайне низких концентрациях (так называемые микроэлементы), и их комплексы — это не случайные примеси, а биологически важные компоненты клетки. Множество патологических нарушений, связанных с недостаточностью в клетке железа, меди, цинка, марганца, молибдена, кобальта, не говоря уже о более распространенных в живых тканях металлах кальции, магнии и др., имеют большое значение для биохимии животных и растений, а также для прикладных областей. Исследования биохимических процессов, в которых участвуют ионы металлов, представляют сравнительно новую, но уже вполне определившуюся и быстро развивающуюся область науки, называемую бионеорганической химией. К ней относится также и моделирование структурных и функциональных параметров природных комплексов металлов. Несмотря на значительные различия выполняемых физиологических функций, типов катализируемых реакций и структур реакционных центров, ферменты, являющиеся предметом исследования в бионеорганической химии, объединяет одна особенность— участие ионов металлов или в самом каталитическом акте, или в поддержании третичной или четвертичной структуры белка, необходимой для оптимального функционирования фермента. Это определяет известную общность подходов к изучению ферментов указанной группы и выбор некоторых методов исследования, заимствованных, с одной стороны, из арсенала энзимологии, а с другой - из химии координационных соединений. [c.5]


    Имидазол — один из тех аминов, которые в нейтральных растворах существуют в непротонированном виде и относятся к сравнительно сильным основаниям Льюиса. Это весьма существенно для биохимии, поскольку здесь накладываются особенно жесткие ограничения в отношении pH раствора и состава водной фазы. Вероятнее всего этим и объясняется тот факт, что ни специфический кислотный, ни специфический основной катализ не играют большой роли в энзимологии, а подходящими свойствами обладают основания Льюиса. Каталитическая активность молекулы гистидина в основном связана с наличием атома азота, обладающего свободной парой электронов, что и объясняет его эффективность как нуклеофильного катализатора при нейтральных значениях pH раствора. [c.27]

    Кроме того, существуют не менее важные разделы биохимии, которые можно рассматривать как достаточно обособленные дисциплины, имеющие свои задачи и специфические методы исследования. Среди них следует отметить эволюционную и сравнительную биохимию, задачами которых является изучение особенностей жизни организмов на различных стадиях их эволюционного развития энзимологию, занимающуюся исследованиями строения, функций и механизмов действия ферментов витаминологию — химию витаминов эндокринологию — химию гормонов радиационную биохимию, изучающую изменения в обмене веществ живых [c.19]

    СРАВНИТЕЛЬНАЯ ЭНЗИМОЛОГИЯ РАЗВИТИЯ [c.101]

    А (Б. Меррифилд, 1969). Дальнейшее развитие получили аналит. методы стал широко использоваться автоматич. аминокислотный анализатор, созданный С. Муром и У. Стайном в 1958, существенно модифицированы хроматографич. методы, до высокой степени совершенства доведен рентгеноструктурный анализ, сконструирован автоматич. прибор для определения последовательности аминокислотных остатков в Б.-секвенатор (П. Эдман, Г. Бэгг, 1967) Благодаря созданию прочной методнч. базы стало возможным проводить широкие исследования аминокислотной последовательности Б. В эти годы была определена структура неск. сотен сравнительно небольших Б. (до 300 аминокислотных остатков в одной цепиХ полученных из самых разл. источников как животного, так и растит., бактериального, вирусного и др. происхождения. Среди них — протеолитич. ферменты (трипсин, химотрипсин, субтилн-зин, карбоксипептидазы), миоглобины, гемоглобины, цитохромы, лизоцимы, иммуноглобулины, гистоны, нейротоксины, Б. оболочек вирусов, белково-пептидные гормоны и др. В результате были созданы предпосылки для решения актуальных проблем энзимологии, иммунологии, эндокринологии и др. областей физ.-хим. биологии. [c.248]

    Современная энзимология представляет собой бурно развивающуюся науку. Ее достижения находят все более широкое применение в различных областях практической деятельности человека, н прежде всего в медицине и биотехнологии. В последние годы благодаря стремительному совершенствованию технической базы исследований и производства были выделены и подробнее охарактеризованы десятки новых ферментов, катализирующих самые разнообразные химические реакции. Очевидно, нет необходимости убеждать читателя в том, что по-настоящему эффективное практическое использование огромного объема фактических данных, накопленных в результате лабораторных исследований, невозможно без их всестороннего теоретического анализа и осмысления, без глубокого понимания принципов действия биологических катализаторов— ферментов. Здесь уместно напомнить, что уникальные свойства ферментных катализаторов — поразительная специфичность и огромная удельная активность — обусловливаются сочетанием сравнительно несложных закономерностей физической и физикоорганической химии. Ясно поэтому, что путь к свободному овладению фундаментальными представлениями науки о ферментах как мощным инструментом практической энзимологии лежит через постижение основ классического органического катализа. Главная цель предлагаемой вниманию советских читателей книги М. Бендера, Р. Бергерона и М. Ко-миямы как раз и состоит в том, чтобы помочь начинающим работать в области энзимологии преодолеть этот нелегкий путь. [c.5]

    Вопрос о локализации ферментов в структурных образованиях клетки (ядро, митохондрии, лизосомы и др.) является чрезвычайно важным, особенно в препаративной энзимологии, когда перед исследователем поставлена задача изолировать и вьщелить фермент в чистом виде. Сравнительно легко обнаружить локализацию фермента методами цито-и гистохимии. Для этого тонкие срезы органа инкубируют с соответствующими субстратами и после инкубации локализацию продукта реакции устанавливают добавлением подходящих реактивов до появления специфической окраски. [c.158]

    Число природных фенольных соединений растительного и животного происхождения оказалось столь большим, а функции их столь многообразными, что биохимическое изучение фенолов привлекло широкие круги исследователей. Были проведены работы по методам анализа и выделению природных фенолов различных классов, исследованию их физиологических свойств, изучению энзимологии и механизма процессов биосинтеза и метаболизма фенольных соединений. Этим проблемам посвящено большое число работ советских ученых (академик А. Л. Курсанов, М. Н. Занромётов и др.). Однако обобщающих трудов, затрагивающих разнообразные аспекты изучения фенольных соединений, оказалось сравнительно мало. [c.5]


    Книга представляет интерес и для биохимиков, которые найдут в ней много свежего материала по сравнительной энзимологии (особенно в том, что касается общих механизмов и особенностей функционирования кислороднереносящих белков и ферментов азотного метаболизма у организмов различного эволюционного уровня), и для химиков, работающих в области катализа комплексами металлов, для которых структуры активных центров ферментов являются образцом при поиске оптималных синтетических катализаторов. [c.6]

    Ферменты — это белки, и, подобно всем белкам, они могут избирательно присоединять определенные вещества — лиганды. Однако в отличие от прочих белков фермент катализирует химическое превращение лиганда. Лиганд, подвергающийся химическому превращению, называют субстратом фермента продукты реакции освобождаются в раствор. Учение о ферментах (энзимология) традиционно занимает одно из ведущих мест в биохимии. Это объясняется той важной ролью, которую играют ферменты любые химические превращения веществ в организме происходят при их участии. Однако есть и другая причина особого внимания к ферментам, не связанная с их биологической ролью. Дело в том, что ферменты, в отличие от большинства других белков, сравнительно легко обнаруживать и измерять их количество по катализируемой ими реакции. Многие свойства, характерные для всех белков, вначале были изучены на ферментах. Такие понятия, как активный центр, ингибиторы, изоферменты (изобелки), аллостери-ческая регуляция, возникли и сложились в энзимологии, и лишь позднее они распространились на другие белки. [c.64]


Смотреть страницы где упоминается термин Энзимология сравнительная: [c.7]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

сравнительная



© 2024 chem21.info Реклама на сайте