Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устьица, газообмен

    Эпидермис наземных частей растения, особенно листьев, пронизан множеством мельчайших щелей, называемых устьицами, через которые осуществляется газообмен между растением и атмосферой. [c.73]

    Кутин водоустойчив, защищает ткани листа от потери влаги и от инфекций. Через устьица происходит газообмен с окружающей средой. Размеры устьиц регулируются замыкающими клетками — специальными эпидермальными клетками, содержащими хлоропласты [c.255]


    Рассматривая поверхность листьев в световом микроскопе, можно заметить, что у двудольных клетки эпидермиса имеют неправильную форму и извилистые стенки (рис. 6.3., Б), тогда как у однодольных форма их более правильная, приближающаяся к прямоугольной (рис. 6.3., В). На определенных расстояниях друг от друга на поверхности листа рассеяны особые, специализированные клетки эпидермиса, так называемые замыкающие клетки. Они всегда располагаются парами — две клетки рядом, и между ними видно отверстие это так называемое устьице (рис. 6.1. и рис. 6.3., Б и В). Замыкающие клетки имеют характерную форму, отличную от других клеток эпидермиса. Кроме того, это единственные клетки эпидермиса, в которых есть хлоропласты все прочие клетки эпидермиса бесцветны. Размеры устьичного отверстия (устьичной щели) зависят от тургесцентности замьпсающих клеток (подробнее об этом см. в гл. 13). Устьица обеспечивают газообмен при фотосинтезе и дыхании, поэтому их больще всего в эпидермисе листьев, хотя они встречаются также и на стебле. Через устьица выходят из растения наружу и па-рыводы, что составляет часть общего процесса, называемого транспирацией. [c.224]

    Чтобы процесс фотосинтеза проходил непрерывно, клетки должны быть достаточно насыщены водой. В таких условиях устьица до определенной степени открыты. При этом будут происходить транспирация, газообмен, снабжение листьев в достаточной мере углекислым газом, т. е. процесс фотосинтеза пойдет нормально. [c.151]

    Газообмен осуществляется через большие межклетники и устьица Содержит запасы крахмала [c.255]

    Нижний эпидермис Тонкая кутикула Замыкающая клетка (содержит хлоропласты пара этих клеток контролирует раскрывание и закрывание устьиц) "Устьице (в нижнем эпидермисе их больше они обеспечивают газообмен) [c.257]

    Устьица, напротив, играют важнейшую роль в газообмене между листом и воздухом это основной проводящий путь для водяного пара, СО., и кислорода. Вообще говоря, устьица могут располагаться на обеих поверхностях листа, но чаще они встречаются на нижней его поверхности, где число их колеблется в пределах от 50 до 500 на квадратный миллиметр. При максимальной частоте отдельные [c.231]

    Устьице — миниатюрная пора на нижней поверхности листа, через которую происходит газообмен листа с окружающей средой и транспирация. [c.192]

    Возникающее вследствие осмотического дисбаланса этих двух сред избыточное гидростатическое давление внутри растительной клетки, называемое тургорным дявленвем (или просто тургором), имеет для растений жизненно важное значение. Тургор-главная сила, растягивающая клетку в период ее роста он в значительной мере ответствен также за жесткость растительных тканей (сравните ушщишй лист обезвоженного растения с упругими листьями растения, получающего достаточно воды). Кроме того, изменения тургора обусловливают те ограниченные движения, которые можно наблюдать у растений, например движения замыкающих клеток устьиц, регулирующих транспирацию и газообмен между листьями и атмосферой (рис. 19-10), подвижность ловчих органов у насекомоядных растений или листьев у растений-не-дотрог , чутко реагирующих на прикосновение. [c.166]


    Устьица — это отверстия в эпидермисе, через которые происходит газообмен. Они находятся в основном на листьях, но имеются также и на стеблях. Каждое устьице окружено двумя замыкающими клетками, которые в отличие от обьга-ных эпидермальных клеток содержат хлоропласты. Замыкающие клетки контролируют величину отверстия устьица за счет изменения своей тургесцентности. Внешний вид устьиц и замыкающих клеток хорошо видны на микрофотографиях, полученных с помощью сканирующего электронного микроскопа (рис. 13.14). [c.119]

    Важнейшая ткань листа — мезофилл, где осуществляется фотосинтез (рис. 3,17). Покрывающий лист эпидермис, клетки которого, за исключением замыкающих клеток устьиц, не содержат хлоропластов, защищает ткани листа, регулирует газообмен и транспирацию. Система разветвленных проводящих пучков необходима для снабжения тканей листа водой, минеральными и некоторыми органическими веществами и для оттока ассимилятов в другие части растения. Мезофилл обычно дифференцирован на две ткани — палисадную (столбчатую), расположенную под верхним эпидермисом, и губчатую, находящуюся в нижней стороне листа. В палисадном мезофилле клетки вытянуты перпендикулярно поверхности листа и расположены в один или несколько слоев. Клетки губчатого мезофилла связаны друг с другом более рыхло из-за больших межклетников. У большинства растений устьица находятся на нижней стороне листа, обширные межклетники губчатой паренхимы обеспечивают газообмен. Благодаря развитой системе межклетников мезофилл обладает громадной поверхностью, во много раз превышающей наружную поверхность листа. [c.99]

    Газы и пары, легко проникая в ткани растений через устьица, могут непосредственно влиять на обмен веществ клеток, вступая в химические взаимодейст вия уже на уровне клеточных стенок и мембран. Пыль, оседая на поверхности растения, закупоривает устьица, что ухудшает газообмен листьев, затрудняет поглощение света, нарушает водный режим. [c.433]

    У игольчатьк листьев под эпидермой располагается плотный слой клеток гиподермы, подобных волокнам и имеющих толстые стенки. Гиподерма относится к склеренхимным (механическим) тканям (гиподермальная склеренхима). У различных хвойных эта ткань варьируется по содержанию. В эпидерме имеются многочисленные устьица (десятки и даже сотни на 1 мм ), через которые происходят газообмен и транспирация. Под устьицами у хвои слой гиподермы также прерывается. Эпидерма (вместе с гиподермой) служит механической опорой для мезофилла и других тканей листа. [c.212]

    Степень ожога растений пестицидами зависит от условий окружающей среды и видовых особенностей растений. Как правило, теплая погода способствует лроявлению ожигающего действия. Днем, при усиленном газообмене и при открытых устьицах на листьях, ожоги могут быть сильнее, чем ночью, когда устьица закрыты. Чем тоньше покровные ткани растений, тем сильнее пестицид действует на растение. Более подвержены ожогам растения, произрастающие во влажных условиях. [c.41]

    Накопление С1, т. е. разница между содержанием С1 у подвергавшихся газации и контрольных растений, сильно варьировало в зависимости от видовой принадлежности растений. В то время как аккумуляция С1 у клевера лугового красного в темноте составляла 0,16% С1 на сухое вещество, достигая лишь одной шестой от аккумуляции при дневном освещении (0,97% I), различие было не столь резким у райграсса, накапливавшего 0,37 и 1,17% соответственно. Очевидно, что, несмотря на предполагаемое закрывание устьиц в темноте (Meidner, Mansfield, 1968), через них все же осуществляется существенный газообмен [c.58]

    Через систему заполненных воздухом межклетников идет газообмен между живыми клетками и внещней средой, с которой связывают эту систему устьица (особые поры листа) или чечевички (специализированные щели в стеблях древесных пород). По этим межклетникам к живым клеткам поступают кислород для дькания и диоксид углерода для фотосинтеза. Особенно развита система воздухоносных межклетников в губчатой паренхиме. [c.222]

    Устьица позволяют осуществляться газообмену. Диоксид углерода необходим для фотосинтеза, а кислород является побочным продуктом. У двудольных устьица расположены главным образом на затененной нижней стороне листа, что сводит к минимуму потери воды при транспирации. Замыкающие клетю  [c.340]

    Однако, когда почва высыхает, к этому водному дефициту, обусловленному дневным отставанием поглощения от транспирации, присоединяется основной уровень недостатка влаги, определяемый величиной Тд]. В этих условиях начинается ускоренное разрушение =РНК (а возможно, и ДНК), хотя синтез РНК может продолжаться и интенсивность клеточного деления сама по себе может снижаться относительно медленно [2451. Первоначально тенденция к подавлению метаболизма проявляется только в течение дневного периода максимального водного дефицита однако этот период с каждым днем становится все длиннее. В этом время в связи с закрыванием устьиц замедляется транспирация и возрастает температура листа. Закрывание устьиц ухудп1ает газообмен и таким путем приводит к ослаблению фотосинтеза. На суммарный фотосинтез могут также влиять снижение тургора и усиление дыхания, наблюдающиеся во время фазы реакции при наступлении засухи [104, 7341. По мере падения тур-тора должно все более замедляться увеличение размеров клеток, а следовательно, и увеличение листовой поверхности. Все эти факторы приводят в конце концов к постепенному снижению скорости роста. [c.312]


    Лист — это обычно плоский орган. Его основная, фотосинтезирующая, ткань (мефозилл) пронизана сильно разветвленными жилками, состоящими из ксилемы и флоэмы. Лист окружен эпидермисом, покрыт воскообразной кутикулой. Многочисленные устьица, отверстость которых регулируется тургором замыкающих клеток, обеспечивают газообмен между внутренним пространством листа и атмосферой. [c.102]

    Выделяющийся в процессе фотосинтеза кислород попадает в окружающую среду через устьица, пройдя путь от поверхности клетки мезофилла до подустьичной полости по одному из связанных с ней воздушных ходов. Закрывание устьиц, вызванное ослаблением тургора замыкающих клеток, прекращает этот газообмен, но не подавляет полностью ни фотосинтеза, ни дыхания, поскольку и внутри листа эти процессы взаимно питают друг друга, будучи замкнуты в цикл, так что кислород или СО2, выделяющиеся в одном из них, поглощаются в другом. Фотосинтез, однако, в этих условиях (т. е. при закрытых устьицах) ограничен объемом, дыхания, тогда как в оптимальных условиях он может происходить с интенсивностью, превышающей максимальную интенсивность дыхания в 10 и даже 20 раз. [c.112]

    Однако, для того чтобы клетка сохраняла надлежащую жизнеспособность, содержание влаги в ее протопласте не должно выходить за определенные, достаточно жесткие пределы. Хотя количество выпадающих осадков и влажность почвы сильно колеблются, зеленому растению удается поддерживать свою оводненность на относительно постоянном уровне. Это достигается благодаря сокращению потерь на испарение, когда воды пехватает. Растения непрерывно поглощают воду из окружающей среды и часть этой воды испаряют. Транспирация — испарение воды надземными органами растения — есть неизбежное следствие самого строения листа. Предназначенный для эффективного фотосинтеза лист —это обычно крупный, плоский, насыщенный влагой орган, пронизанный множеством пор, сооб-П1ающихся с разветвленной сетью воздушных ходов. На солнце такой орган неизбежно теряет много воды. Вода испаряется с поверхности влажных клеток мезофилла, диффундирует по межклетникам и выходит наружу через открытые устьица. Закрывание устьиц при недостатке воды может сокращать потребность зеленого растения в воде, причем очень сильно — до небольшой доли от потребности, свойственной ему, когда устьица открыты. Однако закрывание устьиц влечет за собой и нежелательные последствия нарушается газообмен между атмосферой [c.169]

    Слейчером и Джарвисом [115, 122] предложен порометр для непрерывного измерения скорости диффузии закиси азота (МаО), градиент концентрации которой создается подачей газа в воздух, проходящий через один из двух компартментов газообменной камеры. Изменения концентраций МгО в воздухе с верхней и нилсней сторон листа регистрируют с помощью инфракрасного газоанализатора. Сопротивление, вычисленное, исходя из потока ЫгО (см -см -с ) и установленной разницы концентраций (см -см- ), включает сопротивление межклетников, устьиц с обеих сторон листа и обоих пограничных слоев. Последнее может быть уменьшено перемешиванием воздуха в камере или определено экспериментально как общее сопротивление влажной реплики (фильтровальной бумаги) в условиях транспирирующего листа. Метод может быть использован для характеристики устьичной проводимости, если сопротивление листа измеряется в условиях, когда внутреннее сопротивление и сопротивление пограничных слоев постоянны и поддаются измерению. Установленное на модельной перфорированной мембране соотношение коэффициентов диффузии водяного пара и закиси азота н,о N,0 =1,54 позволяет рассчитывать сопротивление потоку водяного пара. [c.166]

    Для конструирования биосенсоров можно эффективно использовать и другие виды растительных материалов. Например, для определения цистеина на поверхности аммонийного датчика иммобилизуют модифицированные листья огурца. Вообще листья растений, по-видимому, имеют много преимугцеств как биокатализаторы благодаря своему строению. Многие листья имеют многослойную структуру, включающую восковое покрытие (кутикулу) с внешней стороны листа, слой эпидермальных клеток (эпидермис) и примыкающий к нему губчатый промежуточный слой те же слои повторяются в обратном порядке на другой стороне листа. Кутикула обладает гидрофобными свойствами, однако проницаема для газов. Газообмен осуществляется через небольшие отверстия на поверхности листа, называемые устьицами. Губчатый промежуточный слой наиболее активен в метаболических процессах с участием газов. Для получения биокаталитических мембранных электродов срезают кутикулу с наружной или нижней стороны листа и помещают оставшуюся часть листа на газочувствительный потенциометрический электрод так, чтобы открытый эпидермальный слой находился в контакте с анализируемым раствором, а газопроницаемая восковая кутикула-с внутренними элементами сенсора. [c.52]

    В определенных условиях окружающей среды некоторые САМ-растения могут переключать свой обмен веществ и фотосинтезировать почти как Сз-растения. В САМ-состоянии устьица открываются ночью и закрываются днем, а в Сз-со-стоянии все происходйг наоборот. Очень часто газообмен у САМ-растений происходит таким образом, что СОг поглощается и днем, и ночью. Переходу в САМ-состояние способствуют условия водного дефицита и резкие перепады температур днем и ночью. Чтобы различить эти два способа ассимиляции СОа, очень удобно воспользоваться данными об изотопном составе (13С/12С) растения. Дело в том, что ФЕП-карбоксилаза почти не различает СОг и СОг и фиксирует оба соединения одинаково, тогда как у РуБФ-карбоксилазы степень дискриминации выражена гораздо сильнее. [c.486]


Смотреть страницы где упоминается термин Устьица, газообмен: [c.178]    [c.212]    [c.342]    [c.147]    [c.279]    [c.378]    [c.119]    [c.405]    [c.96]    [c.138]    [c.142]    [c.29]   
Жизнь зеленого растения (1983) -- [ c.96 , c.112 , c.119 , c.121 , c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Устьица, газообмен влияние внешних факторов



© 2025 chem21.info Реклама на сайте