Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформация макромолекул Конформационная оптическая активност

    Как показал П. Пино, оптическая деятельность приготовленных им поли-а-олефинов в растворе намного выше, чем у низкомолекулярных парафинов, сходных по строению с мономерными звеньями полимеров. Это объясняется, по мнению Пино, тем, что макромолекула этих полимеров при переходе их в раствор сохраняет спиральную конформацию (см. с. 175), которая вследствие своей асимметричности вносит дополнительный вклад в величину оптического вращения — конформационная оптическая активность. В пользу этого мнения говорят результаты, полученные при полимеризации олефинов, не содержащих асимм етрических боковых групп, в условиях, благоприятствующих образованию правой или левой спирали. [c.197]


    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Существование спиральных конформаций в растворе макромолекул, полученных из оптически активных а-олефинов, может быть ясно показано при сравнении вращательных способностей в твердом состоянии 17, 8] и в растворе, а также на основе конформационного анализа, если вычислять [5] оптическую активность поли-а-олефинов полуэмпирическим методом Брюстера [9]. [c.335]

    Теория оптической активности пока еще не позволяет установить точную структуру белка по спектру КД, хотя, как будет видно позже, в случае нуклеиновых кислот дело обстоит несколько лучше. Осложнения возникают из-за того, что очень часто хромофор не является асимметричным, а его асимметрично возмущают соседние группы. Кроме того, в случае белков (когда спектры КД регистрируют в области поглощения пептидных связей) имеется осложнение другого рода так как полипептид-ная цепь принимает многие конформации, зависящие от точной локализации пептидных связей в белке, спектр соответствует усредненным конформационным параметрам. Поэтому на практике используется эмпирический подход, заключающийся в том, что получают спектр ДОВ или КД молекул, структура которых точно определена методом рентгеноструктурного анализа, и устанавливают связь спектра со структурой молекулы. Этот спектр затем сравнивают со спектром белка, структура которого неизвестна, Главная проблема, которая возникает при использовании этого подхода, состоит в необходимости сделать допущение (которое редко доказывается), что структура макромолекулы в растворе (известно, что ДОВ и КД регистрируют в растворе) почти такая же, как в пленке, кристалле или сухом порошке (которые используют для рентгеноструктурного анализа), приготовленных с использованием того же растворителя. [c.466]


    Исследования влияния углеводородов на конформационное состояние макромолекул глобулярных белков проводились методами оптического вращения и его дисперсии, вискозиметрически, спектрофотометрически и по изучению кинетических параметров ферментативной активности, Вращение плоскости поляризации чрезвычайно чувствительно к изменению конформации белковых молекул. Правда, между оптической активностью и структурой белка нет простой и ясной зависимости, но значение оптической активности как характеристики степени конформационного изменения белков общеизвестно и играет большую роль при изучении процессов денатурации. [c.29]

    В большинстве случаев состояние системы полимер— растворитель в широкой области концентраций м. б. выражено фазовой диаграммой. В нек-рых системах, особенно в растворителях типа диметилформамида, крезола, хлороформа, конформация макромолекул остается а-спиральной по всей области концентраций, несмотря на различие в межмолекулярной организации. Минимальная длина П., необходимая для образования а-спирали в р-ре, составляет 10—20 аминокислотных остатков. Нек-рые П. не образуют а-спиралей из-за пространственных препятствий, создаваемых боковыми группами (валин, изолейцин), или вследствие образования прочных водородных связей между боковыми группами (серии, треонин, их 0-ацетильные производные). В ряде систем в зависимости от концентрации наблюдается либо а-спираль, либо р-форма, причем переход ар обратим без каких-либо промежуточных состояний, как это имеет место в случае р-ров полиэлектролитов. Такой же переход упорядоченных фаз неио-низирующихся П. в конформацию статистич. клубка м. б. вызван добавлением растворителей, разрушающих спираль, напр, трифторуксусной или дихлоруксусной к-ты. Относительные стабильности спиральных конформаций различных П. изучают путем титрования их р-ров трифторуксусной к-той. Спирали оптически активных П. значительно устойчивее спиралей соответ-ствуюпщх рацемич. полимеров. Ионизация боковых групп полилизина и др. полиэлектролитов вызывает разрушение а-спиралей вследствие электростатич. отталкивания боковых групп. Так, полиглутаминовая к-та при pH 5 имеет форму спирали, а в щелочных р-рах — конформацию статистич. клубка. Для солей этих полиаминокислот в твердом состоянии наблюдается конформационный переход ар при изменении [c.14]

    Если существенный триптофанил находится вне активного центра, то сшивка изменяет баланс водородных, гидрофобных и других слабых сил (множественные разрывы связей), поддерживающих нативную конформацию макромолекулы. В результате инициируется кооперативный процесс денатурации, которая и приводит к потере ферментативной активности. В большинстве случаев непосредственной причиной инактивации являются конформационные изменения макромолекулы. Действительно, фотоинактивации белка сопутствуют конформационные перестройки и оба эти эффекта наблюдаются при одинаковых дозах УФ-света. УФ-индуцированные конформационные перестройки в белках зарегистрированы с помощью методов седиментации, электрофореза, вискозиметрии, полярографии, электронной микроскопии, люминесценции, оптического вращения, осмометрии, кондуктометрии, измерений поверхностного натяжения, растворимости, скорости дейтериевого обмена, устойчивости к протеолитическим ферментам и теплу, количества титруемых кислых, основных и 5Н-групп, изучения иммунологических свойств. [c.262]


Смотреть страницы где упоминается термин Конформация макромолекул Конформационная оптическая активност: [c.28]    [c.28]   
Высокомолекулярные соединения Издание 3 (1981) -- [ c.197 ]




ПОИСК





Смотрите так же термины и статьи:

Конформации макромолекул

Конформационные

Оптическая активность

активное оптически активное



© 2025 chem21.info Реклама на сайте