Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптическое вращение величина

    При практическом определении удельного вращения навеску оптически активного вещества а грамм растворяют в мерной колбе (пикнометре) на V мл и определяют величину оптического вращения. Формула, приведенная выше, при под- [c.42]

    Поляриметрия — это метод измерения величины вращения плоскости поляризации света при прохождении его через оптически активные вещества. Найденное оптическое вращение пересчитывают в удельное или молекулярное вращение. [c.258]


    Наблюдаемое оптическое вращение - величина оптического вращения, измеряемая поляриметром и выражаемая в градусах. [c.199]

    На практике используются величины наблюдаемого и удельного оптического вращения. Величина а наблюдаемого оптического вращения приводится обычно с указанием условий ее определения и позволяет судить о точности производимых измерений (см. гл. 8). — Прим. перев. [c.316]

    Вторым параметром, характеризующим оптическую активность, служит ориентация эллипса. Заметим, что большая ось эллипса не параллельна направлению поляризации падающего света. Если свет практически не поглощается средой, отношение осей эллипса оказывается столь малым, что свет по сути дела остается плоскополяризованным. В этом случае можно говорить просто о повороте плоскости поляризации света. Таким образом, ориентация эллипса отвечает оптическому вращению. Величина оптического вращения зависит от длины волны, поэтому часто используется термин дисперсия оптического вращения (ДОВ). [c.63]

    Для определения состава по измеряемому оптическому свойству требуется в каждом из этих методов очень тщательная калибровка. Если анализируется только один компонент, то достаточно показать, что измеряемая величина однозначно связана с концентрацией этого компонента и не зависит от присутствия других веш,еств. Большинство оптических методов, за исключением методов, основанных на измерении оптического вращения и показателя преломления, в обычных условиях не позволяет получить точность, превышающую 1%, а чаще всего точность оказывается значительно меньшей .  [c.63]

    Для исследования строения органических соединений, изучения явления таутомерии, а также для аналитических целей большое значение приобрело установление зависимости величины угла вращения от длины волны проходящего света. Эту зависимость называют дисперсией оптического вращения. [c.895]

    Значение и знак величин а и Де изменяются при сканировании длин волн Я. Зависимость оптического вращения а от X называется кривой дисперсии оптического вращения, зависимость дихроичного поглощения Де от к — спектром кругового дихроизма. Для отдельно выделенного оптического перехода вид кривых ДОВ и КД очень сходен с соответствующими зависимостями п и е от X. Однако в зависимости от знаков разностей и е —Вг при > макс кри- [c.36]

    Практическим критерием 100%-ной оптической чистоты кристаллического вещества часто может служить неизменность его оптического вращения и температуры плавления в ходе дальнейших перекристаллизаций. Однако этот критерий не может быть абсолютно надежным даже частично расщепленный энантиомер может не менять своих констант, если рацемическая модификация образует твердый раствор, состав которого не изменяется при дальнейшей кристаллизации (подобно тому, как существуют азеотропные смеси, не меняющие своего состава при перегонке). Другим признаком служит неизменность тех же констант для диастереомерных солей при их дополнительной перекристаллизации. Однако и этот критерий не обладает абсолютной надежностью. Довольно хорошим признаком полной оптической чистоты может служить получение обоих антиподов с одинаковым по абсолютной величине вращением, особенно если оба антипода получались независимым путем с использованием разных асимметрических реагентов. [c.161]


    Как уже было указано, большинство нефтей вращает плоскость поляризации вправо, однако существуют нефти из Борнео и Аргентины, вращающие влево. Более того, тщательное исследование показывает, что оптическое вращение меняет знак при переходе от фракции к фракции. Вследствие этого предполагается, что измеряемая величина вращения имеет алгебраический характер. В случае компенсации левого вращения правым, т. е. от неактивной формы, возможен ряд переходов к активным формам, когда преобладает один из оптических изомеров. Нефть содержит [c.17]

    Величина оптического вращения нефти имеет до некоторой степени статистический характер и определяется наличием, вероятно, далеко не одного ка сого Нибудь индивидуального углеводорода. Поэтому наблюдаемая величина вращения, хотя она [c.18]

    Вицинальное правило Чугаева — Куна — Фрейденберга Знак оптического вращения определяется ближайшим окружением асимметрического центра. Заместители, находящиеся на значительном расстоянии, могут изменить величину, но не знак вращения. В гомологическом ряду молекулярное вращение стремится к предельному значению. Так, для карбинолов [c.203]

    Атака гидроксильной группы на карбонильную при циклизации моноз также равновероятна с обеих сторон. Этот факт объясняет явление мутаротации, т. е. медленного изменения оптического вращения свежеприготовленного раствора кристаллического моносахарида до достижения постоянной величины. Например, кристаллическая 0-глюкоза существует в двух формах — с удельным вращением [а], равным -(-112° и +19°. При растворении в воде оптическое вращение обеих форм изменяется и достигает значения +35°. [c.161]

    Стереохимические методы исследования помогают также решению проблем теоретической органической и неорганической химии. Наиболее известный пример из этой области — использование вальденовского обращения при изучении механизмов реакций. Измерение величины оптического вращения [c.13]

    Рассмотренный вид пространственной изомерии называют оптической изомерией, зеркальной изомерией или энантио-мерией. Обе зеркальные формы составляют пару оптических антиподов, или энантиомеров. Они отличаются друг от друга знаком оптического вращения при одинаковой его величине. [c.41]

    Как уже упоминалось, численная величина оптического вращения зависит от длины волны света, используемого при измерении. Традиционно чаще всего при поляриметрических измерениях используют натриевый свет (в прежнее время — горелки, теперь —натриевые лампы или фильтры) с длиной волны 589 нм. Многие приводимые в литературе данные относительно удельных вращений относятся также к зеленой линии ртути (546 нм). [c.43]

    Эффект Коттона, о котором мы уже неоднократно упоминали, внешне выражается в нарушении плавного хода кривых дисперсии оптического враш,ения (ДОВ, кривых, выражающих зависимость величины оптического вращения от длины волны) и в одновременном превращении при данной длине волны циркулярно-поляризованного света в эллиптически поляризованный. Полосы поглощения, вблизи которых наблюдается эффект Коттона, называются оптически активными. В области этих полос наблюдается также неравенство коэффициентов поглощения для левого и правого циркуляр но-поляризованного света — круговой (циркулярный) дихроизм. [c.292]

    Проведенные расчеты показали, что величина вращения должна существенно зависеть от конформации молекулы. Рассмотрим в качестве примера работу Козмана и Эйринга [104], которые исходили из представлений Куна о связи оптического вращения с определенными полосами поглощения и тем самым с определенными функциональными группами (хромофорами). Сама по себе хромофорная группа, например ОН или Вг, изолированная от влияния асимметрического центра, не может вызывать оптического вращения, ее полоса поглощения изотропна. Находящийся вблизи хромофора асимметрический центр делает полосу поглощения анизотропной такое воздействие авторы называют вицинальным влиянием первого порядка, создающим соответствующий инкремент первого порядка, входящий в качестве составной части в общую наблюдаемую величину оптического вращения. Иной тип воздействия — вицинальное влияние второго порядка — заключается в воздействии на хромофор, уже возмущенный другой группой при этом возникают инкременты второго порядка, которые по величине всегда уступают инкрементам первого порядка. [c.300]

    Задача определения конфигурации здесь несколько более сложна, так как речь идет уже не о двух оптических антиподах, а о четырех веществах, которые характеризуются (в водном растворе) следующими величинами оптического вращения  [c.201]

    Кроме прямого химического перехода при определении конфигураций оптических антиподов используют и косвенные методы, основанные на анализе определенных закономерностей в физических свойствах соединений. Прежде всего для определения конфигурации могут быть использованы закономерности самого оптического вращения. Такие закономерности были найдены Л. А. Чугаевым еще в прошлом веке [43]. Л. А. Чугаев установил, в частности, что в гомологических рядах величина молекулярного вращения является примерно [c.205]


    С другой стороны, влияние растворителя на величину оптического вращения, по предложению Лейте [46], также можно использовать для определения конфигурации. Рассмотрим этот вариант оптического сравнения на примере определения конфигурации замещенных по ядру аналогов сг-фенилэтиламина  [c.209]

    Для белков удельное вращение всегда отрицательно и колеблется для различных белков от —30 до —60°. В растворах желатины удельное вращение изменяется в процессе застудневания это явление называется мутаротацией. Величина оптического вращения в значительной степени зависит от pH, состава и конфигурации полипептидной цепи, и в настоящее время измерениями удельного вращения широко пользуются для изучения процесса денатурации в полипептидах и белках. [c.362]

    Чувствительным методом исследования конфигурации белков и полипептидов в нативном и денатурированном состоянии является метод, основанный на изменении зависимости величины удельного вращения от длины волны света — дисперсии оптического вращения. [c.362]

    Пример 1-2. Предположим, что скорость реакции выражается уравнением—аС,а1=кС. В результате из er ний найдена величина оптического вращения R, которая является линейнсй функцией концентрации, т. е. [c.28]

    Было найдено, что эта величина появляется в ряде простых соотношений, имеющих сходство с теми, которые применяются для оптического вращения [161]. Былрг сделаны попытки использовать константу при изучении состава углеводородов по связи с физическими свойствами. Было найдено, что эта эмпирическая константа применяется в уравнении [c.187]

    Приведем некоторые общие основные правила по получению информации о структуре молекулы из спектров ДОВ и КД. Согласно правилу смещения Фрейденберга, если две сходные молекулы А и В превращаются одним и тем же химическим путем в А и В, то разности в величинах молекулярного вращения А — А и В — В будут иметь один и тот же знак. А по правилу аддитивности для любой длины волны оптическое вращение равно сумме вращений всех оптически активных хромофоров. Наиболее большой вклад в эту сумму дает хромофор, максимум поглощения которого находится ближе всех к длине волны, на которой производят измерение. Однако эти правила следует применять с большой осторожностью. Например, при изменении конфигурации части молекулы, расположенной близко к центру асимметрии, величина оптического вращения может измениться очень сильно. Это явление называется вицинальным эффектом, который приводит к трудно оценимым изменениям оптического вращения. Наряду с этими общими правилами оценки структуры веществ методами ДОВ и КД существует ряд эмпирических правил определения конфигураций для различных классов веществ (например, правило октантов для кетоиной группы в молекулах с жестким скелетом). [c.38]

    Величина угла ф, выраженная в градусах, для 1М раствора оптически активного вещества при длине оптического пути 1 м называется молярной эллиптичностью [0]. Подсчет всех коэффициентов в уравнении (11.3) и приведение к нужной размерности дают следующую зависимость между величинами [0] и Де 0]=ЗЗОО Де. Применение молярной эллиптичности неудобно из-за того, что она измеряется в градусах, что часто приводит к путанице величин кругового дихроизма и оптического вращения, а кроме того, такие единицы измерения КД скрывают физическую сущность дихроичного поглощения. Величина же Де непосредственно связана с основным определением КД. [c.39]

    Давно было замечено, что поляризованный луч света, проходя через слой светлых фракций, отклоняется вправо или влево на некоторую величину. Изуч( ние оптического вращения на различных веществах показало, что существенным условием его является наличие ассиметрического атома углерода. Все синтетические вещества, имеющие в своей молекуле ассиметрический атом углерода, не показывают никакого вращения, потому что при синтезе имеется одинаковая вероятность образования и правой, и левой формы. Подобная рацемическая смесь может быть разделена на оптические изомеры только через солеобразные и другие подобные вещества, образованные, например, заведомо вращающей кислотой или о(шованием. Для этого, очевидно, необходимо перевести исследуемое вещество в состояние, способное реагировать с кислотой или основанием. В приложении к нефтям подобные методы еще недостаточно разработаны, и поэтому обыкновенно измеряется вращение, независимо от того, является ли оно результатом преобладания одного из оптических изомеров или следствием наличия только одного изомера. [c.16]

    Уравнения (VIII.24) и (1Х.27), например, показывают, что как явление ДОВ, так и КД зависят от вращательной силы электронного перехода, которая определяет знаки и величину обоих эффектов. Это означает, что между этими явлениями имеется определенная связь. Ее можно установить, если использовать аналогию явлений дисперсии оптического вращения и дисперсии света, а также кругового дихроизма и поглощения, о которых говорилось ранее. [c.201]

    Объектом синтеза служил этиловый эфир а-бромпро-пионовой кислоты, обладающий круговым дихроизмом в ультрафиолетовой области спектра ( макс 245 нм). Освещая этот эфир циркулярно-поляризованным светом с длиной волны 280 нм, Кун и Браун обнаружили у оставшегося неразложе-ным эфира слабое вращение (до 0,05°). Более значительного эффекта удалось добиться в аналогичном опыте с диметил-амидом азидопропионовой кислоты. Здесь величина циркулярного дихроизма при 290 нм составляет 2—3% оптическое вращение остатка до 1,04°. Несмотря на малые углы вращения, нет никакого сомнения в том, что оптическая акгивность возникла именно в результате действия циркулярно-поляризованного света, а не под влиянием каких-то случайных причин. Доказательством этого служит тот факт, что при перемене на обратный знака поляризации используемого света менялся на обратный и знак вращения остатка. Таким образом, работы Куна и Брауна доказали возможность осуществления асимметрической деструкции под действием циркулярно-поляризованного света. [c.156]

    Используя метод оптического сравнения, Фрейденберг установил [44], в частности, конфигуративную связь окси- и аминокислот, что в то время было невозможно сделать прямым химическим превращением, поскольку оно идет с затрагиванием асимметрического центра, а сведения о механизмах зеакций были тогда еще не столь надежны, как теперь. 3 табл. 7 приведены величины оптического вращения ряда производных молочной кислоты (как вещества с известной конфигурацией) и двух антиподов аланина, задача определения конфигурации которых стояла в данной работе. [c.206]

    Метилгликозиды не мутаротир /ют, не восстанавливают фелингову жидкость и инертны по отношению к реагентам на карбонильную группу. Они устойчивы к основаниям, ио легко гидролизуются в присутствии следов кислоты. Фишер нашел, что фермент мальтаза гидролизует а-метил- )-глюкозид, но не гидролизует р-аномер, а фермент из миндаля— эмульсин гидролизует р-метил-Ь-глюкозид и не изменяет а-изомера. Э. Армстронг (1903), изучая ферментативный гидролиз при помощи поляриметрического анализа, показал, что а- и р-О-глюкозиды превращаются в а и р-1)-глюкозу, что вытекало из величин оптического вращения. [c.528]

    Исследованы закономерности оптического вращения и у других производных пиперидина [И]. Так, Риппергер и Пра-цеюс [12] на основании изучения дисперсии оптического вращения и кругового дихроизма ряда соединений составили диаграмму, показывающую вклад СНз-групп, занимающих разные структурные и пространственные положения, в эффект Коттона оптически активных М-хлорпиперидинов (в кружках приведены величины Ае—коэффициента дихроичного поглощения при 270 нм). [c.535]

    Спектрополяриметрический метод был использован для изучения изменений конформации, вызываемых введением дополнительных пептидных цепей в молекулу инсулина по трем его свободным аминогруппам [15]. Исходный инсулин спирален на 25%, модифицированный лизином — на 32—33%, модифицированный глутаминовой кислотой — на 3—16%. Если к растворам синтетической полиглутаминовой кислоты добавить некоторые красители (акридин оранжевый, псевдоизоцианин) и измерить дисперсию оптического вращения в области 560—360 нм, то при pH 5,5 кривая ДОВ имеет плавный характер (полимер в неупорядоченной конформации) при pH ниже 5,1, когда полимер приобретает спиральную конформацию, дисперсия оптического вращения становится аномальной, причем величина вращения резко возрастает. Это связано с адсорбцией красителя на спиральной полипептидной цепи, в результате чего полоса поглощения красителя становится оптически активной [16]. Дальнейшее развитие спектрополяриметрического метода позволило перейти к прямому измерению эффекта Коттона в области 185—240 нм, непосредственно связанного со спиральностью молекул белков и полипептидов (обзор см. [17]). [c.638]

    Значение и знак величин а и Ае изменяются при сканировании длин волн к. Зависимость оптического вращения а от Я. называется кривой дисперсии оптического вращения, завдасимость дихроичного поглощения Ае от X — спектром кругового дихроизма. Для отдельно выделенного оптического перехода вид кривых ДОВ и КД очень сходен с соответствующими зависимостями и и е от Я. Однако в зависимости от знаков разностей щ—Пт и ег—Ът при Я>Я,мако кривые КД могут быть как положительными (рис. 21, а), так и отрицательными (рис. 21, 6), а кривые ДОВ могут иметь при Я>Ямакс или положительный максимум, переходящий в отрицательный минимум при ЖХмакс (рис. 21, а), или наоборот (рис. 21, б). На 36 [c.36]

    Как известно, все аминокислоты, за исключением глицина, имеют асимметрический атом углерода в а-положении. Все они относятся к /-аминокислотам и обладают одними и теми же заместителями у а-углерода группами —NH2 и —СООН и боковой цепью, характерной для каждой аминокислоты. Долгое время полагали, что оптическое вращение полипептидов и белков является аддитивным свойством и зависит исмючительно от доли, вносимой каждым аминокислотным остатком в отдельности. Однако значительный рост левого вращения белков при денатурации (от —50 до —100°) и при застудневании желатины приводит к выводу, что эти изменения связаны с конформационными изменениями полипептидной цепи. При исследовании эмпирическую величину удельного оптического вращения [а] заменяют на величину эффективного вращения цепи [т  [c.362]

    Интересно, что сами альдоновыс кислоты имеют слабое молекулярное вращение и что циклизация их з лактоны вызьшает большой сдвиг в величинах вращений таким обргзом, главным фактором, изменяющим оптическое вращение, в этой случае является геометрическое строение цикла. С нашей точки зрения, это правило может быть объяснено тем, что лактоны названных дв/х типов порождают квази-энантио-мерные отношения друг к другу, как это видно из рассмотрения моделей у-О-глюконолактона (рис. 22 а и у-О-талонолактона (рис. 22 б). [c.554]

    Ароматическое кольцо в этих соединениях — бензольное, имид-лзольное и индольное —удалено только на один углеродный атом от асимметрического центра и оказывает влияние на величину угла вращения вследствие наличия сопряженной ненасыщенной системы, сильно адсорбирующей свет. Пролин обладает большим вращением, чем все природные аминокислоты перечисленных выше трех групп. В данном соединении асимметрический атом углерода входит в пятичленный цикл. Это подтверждает общее правило — образование цикла ведет к существенному увеличению оптического вращения. Возможно, что ббльщая вращательная способность пролина в сравнении с его нециклическим аналогом объясняется большей жесткостью циклической асимметрической системы. (В качестве аналогии можно указать на тот факт, что пропеллер из мягкой резины имеет гораздо меньшую тягу, чем металлический пропеллер). [c.653]

    В колбу вместимостью 100 мл (см. рис. 2.1) помещают 50 мл эфирного раствора, содержащего 0,012 моль алюмогидрида лития. Раствор не должен содержать гидрида лития. В противном случае процесс восстановления протекает нестереоселективно. К перемешиваемому содержимому колбы прибавляют раствор 1,5 г (0,01 моль) камфоры в 10 мл сухого эфира. Прибавление ведут с такой скоростью, чтобы раствор не кипел. Реакционную смесь перемешивают при комнатной температуре в течение 2 ч. Затем, продолжая перемешивание, охлаждают колбу ледяной водой, добавляют необходимое количество воды и 20 %-ного раствора хлороводородной кислоты до растворения осадка (pH 5-6). Эфирный слой отделяют, из водного слоя продукт извлекают эфиром. Объединенные эфирные растворы промывают водой и сушат сульфатом магния. Эфир упаривают и получают 1,4 г (90 %) изоборнеола, [а]д - 26,0° (в этаноле). Значение величины оптического вращения [c.153]


Смотреть страницы где упоминается термин Оптическое вращение величина: [c.588]    [c.78]    [c.895]    [c.145]    [c.129]    [c.206]    [c.304]    [c.571]    [c.43]    [c.44]   
Биофизическая химия Т.2 (1984) -- [ c.63 ]




ПОИСК







© 2025 chem21.info Реклама на сайте