Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инактивация натриевые каналов

    При изучении натриевых каналов было показано, что ворота и механизм инактивации расположены в разных участках канала. Фермент пролаза, введенный внутрь гигантского аксона кальмара, откусывает часть натриевого канала, торчащую из мембраны. После такой процедуры канал продолжает открывать ворота под действием деполяризацииг но не инактивируется. Таким образом,, [c.110]

    Процесс открывания Ма-каналов под влиянием изменения потенциала мембраны — активация натриевьк каналов — один из наиболее ярких примеров конформационных перестроек белков под влиянием электрического поля. Открьшание каждого канала совершается по известному принципу — все или ничего . Этот процесс может быть остановлен инактивацией, которая опять-таки связана с переходом белков канала в другое кон-формационое состояние. Полный цикл активации и инактивации охватывает десятки тысяч натриевых каналов. [c.251]


    Для исследования локализации интегральных белков в мембране используются различные методы [И]. Среди них наиболее предпочтительными благодаря своей селективности являются ферментативные. С помощью протеаз, например, если действовать ими сначала на наружную, а затем на внутреннюю поверхности мембраны, можно определить, различна ли структура и функция белка на разных сторонах бислоя. Было показано, в частности, что при перфузии аксона проназой, мишенью действия фермента оказались белки, участвующие в инактивации натриевого канала, и, следовательно, они должны быть размещены на внутренней стороне мембраны. Если же проназой действовали извне, то на инактивацию натриевого канала она почти не влияла (гл. 6). [c.77]

    Пока представление о потенциале действия носило феноменологический характер, в дальнейшем необходимо рассмотреть лежащие в его основе молекулярные процессы. В гл. 6 эти вопросы обсуждаются подробно, здесь же рассмотрим лишь некоторые из них. В начале 50-х гг. английские физиологи Ходжкин и Хаксли исследовали потенциал действия и заложили основы современного понимания данного явления. Они показали, что первоначально падение потенциала (деполяризация) обусловлено утечкой ионов натрия (рис. 5.7). По достижении порогового значения ионные каналы в мембране открываются и пропускают ионы натрия. Последующая реполяризация происходит благодаря открытию специальных калиевых каналов и протока ионов калия в обратном направлении, т. е. изнутри наружу, одновременно закрываются натриевые каналы (инактивация). Из рис. 5.7 следует, что первоначально реполяризация превышает значение потенциала покоя, так как при равновесном потенциале для К+ мембрана характеризуется более высоким отрицательным зарядом, чем при потенциале покоя. Это наблюдаемое различие медленно исчезает в результате закрывания калиевого канала и восстановления натриевого потенциала покоя. Инактивация [c.117]

    Инактивация — по-видимому, спонтанное закрывание ионных каналов, например потенциалзависимого натриевого канала мембраны клетки. [c.129]

    Проводимость каналов. Воротные токи. Изменение потоков Ма и К ( На и г к) во время потенциала действия (рис. 16.1) обеспечивается двумя типами ионных каналов для Ма и К, проводимость которых по-разному меняется в зависимости от электрического потенциала на мембране. Ма - проводимость быстро нарастает и затем быстро экспоненциально уменьшается. Калиевая проводимость нарастает по 5-образной кривой и за 5 - 6 мс выходит на постоянный уровень. Восстановление натриевой проводимости до исходных значений происходит в 10 раз быстрее, чем калиевой проводимости. Вопрос о том, каким образом проводимость ионных каналов управляется электрическим полем, является одним из центральных в биофизике мембранных процессов. В модели Ходжкина - Хаксли предполагается, что проводимость для ионов Ма и К регулируется некоторыми положительно заряженными управляющими частицами, которые перемешаются в мембране при изменениях электрического поля. Смещение положения этих частиц в мембране зависит от приложенного потенциала и соответствующим образом открывает или закрывает ионный канал. Считается, что в случае калиевой проводимости имеются четыре активирующие канальную проводимость частицы. В случае Ма - канала предполагается наличие трех активирующих частиц, необходимых для открывания, и одной инактивирующей частицы-для закрывания канала. На основе этих предположений удалось построить математическую модель, с высокой точностью воспроизводящую нервный импульс. Главное достижение состоит в разделении трансмембранных токов на отдельные компоненты (г на и г к) и в экспериментальном изучении их свойств. В функциональной структуре канала были выделены элементы, ответственные за механизмы селекции ионов (селективный фильтр), активации (активационные ворота) и инактивации канала (инактивационные ворота) (рис. 16.2). Движение заряженных управляющих частиц в канале (воротных частиц) обнаруживается экспериментально по возникновению воротных токов. Они появляются в результате смещения частиц в мембране под влиянием наложенного на мембрану электрического импульса. Удалось обнаружить воротные токи смещения, связанные с частицами, отрывающими Ма-канал. Вместе с [c.154]


    Этн токсины представляют большой интерес в качестве инструментов исследования при проведении биохимического анализа структуры канала, так как их связывающий центр отличается от связывающего центра ТТХ. Канал, стабилизируемый в открытом состоянии АТХ, тем не менее блокируется ТТХ если последний отмывается, инактивация натриевого канала еще более замедляется под действием АТХ. Если оба токсина не просто замещают друг друга, напрашивается вывод о том, что ионная пора (gNa) и воротный механизм (h — по уравнению Ходжкин — Хаксли) являются либо различными частями молекулы одного канала, либо отличаются полностью. [c.148]

    Здесь введены два типа частиц, активирующие и блокирующие, так как натриевый ток в условиях фиксированного потенциала (рис. 4.1 кривая 3) сначала нарастает до максимума -активация, а затем уменьшается до О - инактивация. Степени при т и Ь также подбирались эмпирически, чтобы наилучшим образом описать кинетику токов. Численные значения п, т и Ь имеют смысл вероятности нахождения соответствующей частицы в данном месте канала, а величины их могут меняться от О (отсутствие частицы) до 1 (нахождение ее в заданном месте). [c.94]

    Свойства каналов. Основным вопросом, возникшим после создания модели Ходжкина — Хаксли, было выяснение механизмов регуляции ионной проводимости мембраны. Ходжкин и Хаксли предположили, что проницаемость мембраны для каждого иона обусловлена гипотетическими каналами , позволяющими данному иону свободно проходить через мембрану по градиенту концентрации. Многие исследователи, работающие в данной области, представляют себе такие каналы как поры в мембране. В пользу такого предположения свидетельствуют многочисленные косвенные данные. Однако, поскольку диаметр каналов, согласно подсчетам, должен составлять 3—5 А, они не могут быть обнаружены даже при помощи самых мощных современных электронных микроскопов. Поэтому прямых доказательств существования подобных пор не получено. Напротив, гипотетических представлений о свойствах ионных каналов более чем достаточно. Согласно одному из предположений, вход в натриевый канал расширяется по направлению к внутренней стороне мембраны наподобие воронки. Предполагают также, что в мембране существуют молекулярные ворота , обусловливающие открытие (активацию) и закрытие (инактивацию) натриевого канала. Все эти гипотетические структуры схемати- [c.158]

    Еще одна трудность выделения натриевых каналов связана с их сравнительной нестабильностью вне мембраны. Пока известны лишь следующие биохимические характеристики канала ТТХ-связывающий компонент мембраны аксона с 230 ООО (по данным метода инактивации радиацией) или 260 000 (определено биохимическими методами), коэффициент седимента-. ции 9,2 этот компонент инактивируется протеазами, при нагревании и при обработке ионными детергентами (додецилсуль-фатом натрия). Часть натриевого канала, ответственная за связывание ТТХ или STX, построена, по крайней мере частично, из белка СИ]- Молекулярная масса натриевого канала синаптосом мозга равна в целом 320 ООО, что обусловлено присутствием двух небольших полипептидных цепей (37 ООО и 39 ООО) и одной большой (260 000). Однако нельзя исключить, что другие молекулы, липиды или углеводы частично или полностью не участвуют в транспорте ионов Na+. [c.142]

    Токсины скорпионов (S TX). Яд скорпиона содержит несколько видов нейротоксинов. Они представляют собой мини-протеины, содержащие 65—66 аминокислотных остатков и четыре-дисульфидные связи. Некоторые аминокислотные последовательности этих токсинов уже известны. Их действие менее избирательно. S TX I способен одновременно ингибировать инактивацию натриевой и активацию калиевой проводимостей. Из некоторых видов entruroid.es были выделены токсины, ряд из которых избирательно действует на активацию натриевого канала, а один из токсинов блокировал калиевую проводимость [c.150]

    Нейротоксины как инструменты исследования. Во время потенциала действия выделяют три фармакологически различных процесса активацию (открытие) канала, ионный транспорт через открытую пору и инактивацию (закрытие) канала. Нейротоксины, влияющие на потенциалзависимые натриевые каналы, по-видимому, действуют через три различных участка канала [14] участок 1 (ТТХ, STX), относящийся к транспорту ионов участок 2 (ВТХ, вератридин, актонитин), регулирующий активацию канала, и участок 3 (S TX, АТХ), регулирующий инактивацию канала (табл. 6.4). [c.150]

    Причину селективности каналов нужно искать в особенностях их строения. Натриевые каналы, по всей видимости, представляют собой белковые образования. УФ-об-лучение инактивирует натриевые каналы, лричем максимум в спектре действия инактивации лежит при 280 нм, т. е. соответствует максимуму в спектре поглощения белков. Протеолитические ферменты, такие как проназа, папаин и фицин, гидролизуют тот участок натриевого канала, который ответственен за его инактивацию. По-видимому, белковую природу имеют и калиевые каналы. [c.167]

    Изменения натриевой проводимости. Кинетические кривые Ма -проводимости имеют более сложную форму (см. рис. ХХП1.9, А) проводимость нарастает до максимума — активация, а затем снижается — инактивация. Изменение Na -npo-водимости удалось описать на основе предположения о наличии активируюш их т-частиц и инактивируюш их /г-частиц. Предполагают, что для открывания канала необходимо поступление в определенный участок мембраны трех т-частиц. Переход через мембрану одной инактивируюш ей частицы вызывает блокировку канала. Таким образом, изменения Ма -проводимости описывают уравнением [c.177]



Смотреть страницы где упоминается термин Инактивация натриевые каналов: [c.143]    [c.135]    [c.142]    [c.164]    [c.284]    [c.161]    [c.632]   
Биофизика (1983) -- [ c.163 ]




ПОИСК







© 2025 chem21.info Реклама на сайте