Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инсулин мишени действия

    Инсулин, строение, синтез, механизм действия, ткани-мишени. Метаболические эффекты. [c.428]

    В организме человека имеется около 200 типов дифференцированных клеток. Лишь немногие из них продуцируют гормоны, но все 75 триллионов клеток, содержащихся в организме человека, служат мишенями одного или нескольких из 50 известных гормонов. Мишенью гормона может быть одна ткань или же несколько тканей. В соответствии с классическим определением ткань-мишень — это такая ткань, в которой гормон вызывает специфическую биохимическую или физиологическую реакцию. Например, щитовидная железа—специфическая железа-мишень для ТСГ под действием ТСГ увеличивается количество и размеры ацинарных клеток щитовидной железы, повышается скорость протекания всех этапов биосинтеза тиреоидных гормонов. В противоположность этому инсулин воздействует [c.149]


    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    Механизм действия и фармакодинамические эффекты. Препараты сульфонилмочевины увеличивают высвобождение инсулина из р-клеток поджелудочной железы, снижают содержание глюкагона в крови, усиливают действие инсулина на клетки-мишени. [c.398]

    Метаболизм в мозгу, мышцах, жировой ткани и печени сильно различается. У нормально питающегося человека глюкоза служит практически единственным источником энергии для мозга. При голодании кетоновые тела (ацетоацетат и 3-гидрокси-бутират) приобретают роль главного источника энергии для мозга. Мышцы используют в качестве источника энергии глюкозу, жирные кислоты и кетоновые тела и синтезируют гликоген в качестве энергетического резерва для собственных нужд. Жировая ткань специализируется на синтезе, запасании и мобилизации триацилглицеролов. Многообразные метаболические процессы печени поддерживают работу других органов. Печень может быстро мобилизовать гликоген и осуществлять глюконеогенез для обеспечения потребностей других органов. Печень играет главную роль в регуляции липидного метаболизма. Когда источники энергии имеются в достатке, происходят синтез и этерификация жирных кислот. Затем они переходят из печени в жировую ткань в виде липопротеинов очень низкой плотности (ЛОНП). Однако при голодании жирные кислоты превращаются в печени в кетоновые тела. Интеграция активности всех этих органов осуществляется гормонами. Инсулин сигнализирует об изобилии пищевых ресурсов он стимулирует образование гликогена и триацилглицеролов, а также синтез белка. Глюкагон наоборот, сигнализирует о пониженном содержании глюкозы в крови он стимулирует расщепление гликогена и глюконеогенез в печени и гидролиз триацилглицеролов в жировой ткани. Адреналин и норадреналин действуют на энергетические ресурсы подобно глюкагону отличие состоит в том, что их основная мишень-мышцы, а не печень. [c.296]


    Паратгормон — белок, состоящий из 84 аминокислот (ММ 9500 Да), вырабатывается в паращитовидных железах. Низкая концентрация кальция в крови (менее 1,1 ммоль/л) вызывает синтез и секрецию гормона, высокая — ингибирует оба процесса (синтез и сгкрецию). В паращитовидных железах сравнительно мало накопительных гранул, и количество гормона в них может обеспечить максимальную секрецию лишь в течение 1,5 ч (для сравнения, в островковом аппарате поджелудочной железы инсулина достаточно для нескольких дней секреции, а запаса гормонов в щитовидной железе — на несколько недель). Именно поэтому биосинтез паратгормона должен быть постоянным. Периферический протеолиз паратгормона протекает главным образом в купферовских клетках печени, Органы-ми-шени кишечник, кости, почки. Проникающий гормон, действует в клетках-мишенях по аденилатциклазному механизму. В клетках почек и кости имеются мембранные рецепторы к паратгормону — простые белки с молекулярной массой 70 ООО Да. В кишечнике паратгормон усиливает всасывание кальция (косвенное действие через [c.416]

    О механизме действия факторов роста на молекулярном уровне известно относительно мало. Подобно полипептидным гормонам (см. гл. 44), ростовые факторы должны передать сигнал через плазматическую мембрану внутрь клетки (трансмембранная передача сигнала). В конечном счете сигнал фактора роста влияет на один или несколько процессов, имеющих отношение к митозу. Для большинства ростовых факторов на плазматической мембране клеток-мишеней имеются высокоспецифические рецепторы. Клонированы гены рецептора фактора роста эпидермиса (ФРЭ) и инсулина реконструированы [c.364]

    Тот факт, что для превращения полипептидного предшественника в активный продукт необходима модификация этого предшественника, создает возможности для посттрансляционной регуляции потока генных продуктов. Подобные модификации особенно широко распространены среди множества полипептидов, которые служат межклеточными медиаторами в многоклеточных организмах. Такие полипептидные гормоны, как инсулин, циркулируют в крови и осуществляют координацию работы отдаленных клеток. Другие пептиды короткодействующие , они влияют на активность клеток, расположенных вблизи секретирующей клетки. Например, пептидные нейромедиаторы передают информацию от одной нервной клетки другой. Все пептидные медиаторы работают сходным образом независимо от того, распространяется ли их действие на большие расстояния (инсулин) или они действуют локально (нейромедиатор энкефалин). В любом случае медиатор вначале связывается с высокоспецифичным рецептором, расположенным на поверхности определенной клетки-мишени, запуская те или иные процессы в зависимости от свойств клеточного рецептора. Это может быть процесс роста, секреция другого полипептида, экспрессия определенного гена, возбуждение нейрона, специфические поведенческие реакции и т.д. [c.357]

    Резервные рецепторы были выявлены при изучении ответа на некоторые полипептидные гормоны полагают, что они служат как средством увеличения чувствительности клетки-мишени к низким концентрациям гормона, так и резервуаром рецепторов. Представление о резервных рецепторах относится к категории рабочих гипотез оно может корректироваться в зависимости от того, какой аспект действия гормона и на какой ткани подвергается изучению. Например, на клетках гранулезы получено прекрасное совпадение между связыванием гормона и синтезом сАМР (когда какие-либо гормоны активируют аденилатциклазу, резервных рецепторов, как правило, не обнаруживается) в то же время стерои-догенез в этих клетках (сАМР-зависимый процесс) имеет место уже в условиях, когда занято менее 1Уо рецепторов (см. эффекты 1 и 2, рис. 43.3, В). Для того чтобы в клетках печени произошла дерепрессия транскрипции гена фосфоенолпируваткиназы, достаточно, чтобы было занято существенно менее 1 % рецепторов инсулина с другой стороны, на тимоцитах обнаружена высокая степень корреляции между связыванием инсулина и транспортом аминокислот. Примерами диссоциации между уровнем связывания рецепторов и выраженностью биологического эффекта может служить влияние катехоламинов на [c.152]

    Вторая основная группа состоит из водорастворимых гормонов, которые присоединяются к плазматической мембране клеток-мишеней. Воздействие присоединившихся к поверхности клетки гормонов на внутриклеточные процессы обмена опосредуется промежуточными соединениями, называемыми вторыми посредниками (первый посредник — сам гормон) последние образуются в результате взаимодействия лиганд—рецептор. Концепция второго посредника возникла в результате работ Сазерленда, показавшего, что адреналин связывается с плазматической мембраной эритроцитов голубя и увеличивает внутриклеточную концентрацию с AM Р. В последующих сериях исследований было выявлено, что с АМР опосредует метаболические эффекты многих гормонов. Гормоны, в отношении которых доказан такой механизм действия, составляют группу U.A. Некоторые гормоны используют в качестве внутриклеточного сигнала кальций или метаболиты сложных фосфоинозитидов (или то и другое вместе), хотя первоначально предполагалось, что они действуют через с AM Р. Эти гормоны включены в группу II.Б. Для большой и очень интересной группы II.В внутриклеточный посредник окончательно не установлен. В качестве возможных кандидатов на эту роль для инсулина рассматривали целый ряд соединений сАМР, GMP, Н2О2, кальций, несколько коротких пептидов, фосфолипид, сам инсулин и инсулиновый рецептор, но пока не найдено ни одного, отвечающего необходимым критериям. Может оказать- [c.158]


    А. Рецептор инсулина. Действие инсулина начинается с его связывания со специфическим гликопро-теиновым рецептором на поверхности клетки-мишени. Различные эффекты этого гормона (рис. 51.15) могут проявляться либо через несколько секунд или минут (транспорт, фосфорилирование белков, активация и ингибирование ферментов, синтез РНК), либо через несколько часов (синтез белка и ДНК и клеточный рост). [c.259]

    Главное действие некоторых гормонов направлено на плазматическую мембрану клеток-мишеней. Под термином рецептор обычно понимают компоненты плазматических мембран, которые вовлечены во взаимодействие с данным гормоном. Они, ио-види-MOiMy, локализованы исключительно на поверхности мембранных клеток. Для того чтобы выяснить действие гормонов на молекулярном уровне, необходимо очистить и идентифицировать эти специфические мембранные рецепторные структуры, количество которых в тканях очень мало по сравнению с другим присутствующим материалом. Например, концентрация рецептора глюкагона в мембранах клеток печени очень низка и составляет 2,6 пмоль в 1 мг белка [30]. При столь малых количествах взаимодействие с иммобилизованными гормонами должно быть очень эффективным, чтобы обеспечить прочное связывание крупных мембранных фрагментов. Взаимодействие гормонов с их комплементарными рецепторами специфично и характеризуется высоким сродством. Константа диссоциации для глюкагона равна 10 —10 ° моль/л, для инсулина—5-10 " моль/л, а для норэпи-нефрина—10 —10 моль/л [35]. Очень трудно выделять такие малые количества стандартными методами. Использование биоспецифической хроматографии а высокоэффективных иммобилизованных рецепторах позволяет избирательно концентрировать [c.122]

    Как показали эксперименты с мечеными лигандами, многие из белковых сигнальных молекул попадают внутрь клеток-мишеней путем эндохщтоза, опосредуемого рецепторами (см. разд. 6.5.7). Например, инсулин связывается с рецепторами, диффузно распределенными на поверхности фибробластов. За считанные минуты инсулин-рецепторные комплексы концентрируются в окаймленных ямках и переходят в цитоплазму в эндоцитозных пузьфьках (эндосо-мах). Поэтому вполне возможно, что белковые сигнальные молекулы (или продукты их расщепления) непосредственно действуют внутри клетки примерно таким же образом, как стероидные и тиреоидные гормоны. Следует, однако, помнить, что опосредуемый рецепторами эндоцитоз обычно приводит к переносу внеклеточных молекул в лизосомы (разд. 6.5.7) для того чтобы интересующие нас гидрофильные молекулы могли попасть в цитозоль, им потребовался бы какой-то специальный механизм выхода из эндоцитозно-го пузырька или лизосомы (рис. 13-17). [c.261]

    Первичным сигналом для смены абсорбтивного и постабсорбтивного режимов являются изменение концентрации глюкозы в крови и вызвгшные этим реципрок-ные изменения концентраций инсулина и глюкагона. Регуляцию метаболизма инсулином и глюкагоном невозможно рассматривать по отдельности. В крови постоянно присутствуют оба гормона, однако изменяются их относительные концентрации. Действие каждого из них часто направлено на одни и те же конкретные мишени. Например, глюкагон через цАМФ-зависимые протеинкиназы одновременно ингибирует гликогенсинтетазу и активирует гликогенфосфорилазу в печени (см. рис. 9.26), а инсулин через свой рецептор одновременно активирует гликогенсинтетазу и ингибирует гликогенфосфорилазу (рис. 15.7). [c.407]

    Транспортные белки и клеточные рецепторы функционально связаны между собой. Такая связь убедительно прослежена для транспортера глюкозы, чему способствовал уже сравнительно давно установленный факт стимулирующего действия инсулина на перенос глюкозы в клетку. Анализ этого явления привел к предположению, что под влиянием инсулина возрастает содержание молекул транспортера в цитоплазматической мембране, причем в форме, доступной для связывания глюкозы. Так как эффект достигается в течение нескольких минут после добавления инсулина к клеткам-мишеням и зависим от АТФ (Т. Копо et al,, 1977), можно было связать его прежде всего с транслокацией транспортера, а не с какими-либо биосинтетическими процессами. [c.40]

    Оцнако некоторые из гормонов пептидной природы действуют не по аденилатциклазному механизму. Например, инсулин, связываясь с белковым рецептором (М=460 ООО, гликопротеин, состоящий из 4 субъединиц) плазматической мембраны клетки-мишени, изменяет ее проницаемость (см. рис. 136). В результате этого усиливается проникновение в клетку субстратов (глюкоза, аминокислоты и др.) и в ней на полную мощнбсть включаются в работу соответствующие ферменты. Аналогичным образом действует окситоцин образование гормон-рецепторного комплекса сопровождается усилением переноса Са , что инициирует сокращение мышечных волокон альвеол молочных желез. [c.458]


Смотреть страницы где упоминается термин Инсулин мишени действия: [c.144]    [c.275]    [c.369]    [c.66]    [c.74]    [c.149]    [c.149]    [c.451]    [c.369]    [c.282]   
Биологическая химия (2004) -- [ c.407 , c.408 ]




ПОИСК





Смотрите так же термины и статьи:

Инсулин

Инсулин действие

Инсулинома



© 2025 chem21.info Реклама на сайте