Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки структурные переходы

    В дезоксигемоглобине Ре(П) находится в высокоспиновом состоянии и расположен вне плоскости порфиринового кольца. Однако при связывании О2 Ре(П) переходит в низкоспиновое состояние и возвращается в плоскость. Это, очевидно, приводит к смещению проксимального имидазольного кольца на 0,06 нм, что вызывает конформационные изменения в структуре белка в результате сродство тетрамерной формы молекулы белка к кислороду О2 становится выще. Это структурное изменение ле- [c.360]


    Структурной основой белков является полипептидная цепь. Геометрические параметры пептидной связи приведены на рис. 6.8, а. Все атомы пептидной связи находятся преимущественно в одной плоскости. Уровни структурной организации белков описываются аналогично другим полимерам. При жесткой пептидной связи и фиксированных геометрических параметрах конформация полипептидной цепи описывается двухгранными углами Ф, и ф, при С -атомах (рис. 6.9). Вращение вокруг амидной связи -N фактически заторможено. Пептидная связь способна к таутомерным переходам по схеме [c.341]

    Структурные переходы в глобулярных белках, обусловленные воздействием мочевины [59, 60], подчиняются соотношению (36). В этом случае предполагается, что мочевина в равной ме- [c.78]

    Резким структурным переходом, наблюдаемым для биополимеров, является превращение глобулы в моно-а-спираль. Его можно осуществить при ликвидации вулканизационных 55-связей в белке и в условиях полной десольватации хребта полипептидной цепи (например, в диметилформамиде или хлор-этаноле). Это превращение для четырех белков в диапазоне [c.199]

    ИЗМЕНЕНИЕ ХАРАКТЕРА ВОДОРОДНЫХ СВЯЗЕЙ В БЕЛКЕ ПРИ СТРУКТУРНЫХ ПЕРЕХОДАХ [c.317]

    Изменение водородных связей в белке при структурных переходах 319 [c.319]

    В области химии белка этот переход был связан, в первую очередь, с двумя направлениями с разработкой первых структурных формул белковых веществ методами органической химии и с развитием представлений о пространственной конфигурации белковых молекул. [c.39]

    Структурные и термодинамические предпосылки механизма сближения и ориентации в ферментативном катализе. Итак, для эффективности катализа важно, чтобы замораживание реагирующих центров X и Y, которое происходит в комплексе XE-RY (и сопровождает образование связи E-R), как можно больше приблизило реакцию к переходному состоянию X...Y. Для этого необходимо, чтобы строение активного центра в высшей мере было комплементарным по отношению к той структуре молекулы субстрата, которую она должна принять в переходном состоянии реакции. Именно поэтому активный центр ферментов расположен обычно в складках полипептидных цепей, образующих как бы щель . Где-то в глубинных участках этой щели расположены аминокислотные остатки, взаимодействующие с субстратом. Благодаря такой структуре активного центра при переходе молекулы субстрата из свободнодвижущегося состояния (из раствора) в сорбированное состояние (когда она, образно говоря, втискивается в активный центр) происходит необходимое для реакции замораживание вращательных степеней свободы и сближение ее с каталитически активными группами белка. [c.56]


    Свертывание белковой цепи. Для познания принципов структурной организации белковых молекул чрезвычайный интерес представляет явление денатурации (ренатурации). Переход нативной конформации белка в развернутую неструктурированную форму и обратный переход флуктуирующего статистического клубка в исходную компактную трехмерную структуру есть не что иное, как процессы разрушения и формирования именно тех самых связей, которые и обусловливают структурную организацию белковой молекулы. Анализ работ, посвященных экспериментальным и теоретическим исследованиям денатурации белков, был начат в предшествующем томе [2. Ч. III]. Перед тем как продолжить эту тему, кратко напомним основные итоги уже проведенного обсуждения. [c.81]

    Знание направленности изменений энтропии и энтальпии при структурировании белковой цепи и понимание физического смысла причин этих изменений, безусловно, необходимы, но недостаточны для трактовки важнейших особенностей процесса структурной самоорганизации белка. Изменения параметров Д5 и ДЯ, являющихся функциями состояния системы, в принципе ничего не могут сказать о конкретном механизме перехода флуктуирующего клубка в детерминированную трехмерную структуру, его обратимости и необратимости, побудительных мотивах и кинетике. При использовании функции состояния путь, проходимый белковой цепью [c.95]

    Особо следует подчеркнуть роль Т. в структурных исследованиях индивидуальных в-в в конденсир. состоянии и р-ров. Величины, являющиеся второй производной потенциалов Гиббса илн Гельмгольца по параметрам состояния (а Т. относится к таковым), весьма чувствительны к структурным изменениям системы. В твердых телах и сплавах при фазовьгх переходах 2-го рода типа порядок-беспорядок наблюдаются Х-образные скачки Т. В жидкостях такие скачкн имеют место вблизи критич, точек равновесия жидкость-газ и жидкость-жидкость (см. Критические явления). В жидкости, напр., при нагр. часть энергии может идти не на возбуждение новьгх степеней свободы молекул, а яа изменение потенц. энергии взаимодействующих молекул. Этот вклад наз. конфигурационной Т. она связана с характером мол. упорядочения в жидкостях и р-рах. В биохимии политермич. измерения Т. дают информацию о структурных переходах в белках. [c.524]

    Помимо исследования специфического взаимодействия белковых и липидных компонент мембраны, проявляющегося в процессах рецепции, метод спинового зонда используется и для изучения достаточно общих закономерностей липид-белковых взаимодействий. Так, в целом ряде работ (см., например, [ИЗ, 187]) показано, что присутствие белков в липиде приводит к снижению интенсивности вращения гидрофобных зондов, т. е. к повышению жесткости липидных слоев. Именно благодаря влиянию белков на состояние липидных областей мембран жирорастворимые зонды позволяют следить за состоянием белковых компонент мембраны. Так, в работе [1881 при исследовании температурной зависимости подвижности зонда СП (5, 10) в мембранах саркоплазматического ретикулума и в работах [189] при исследовании температурной зависимости подвижности зонда АХП(14) в мембранах бактерий Mi ro o us lysodeikti us, наряду с обычными структурными переходами в липидных областях мембраны, обусловленных самими липидами, обнаружены структурные переходы в липидных областях мембраны, которые исчезали при тепловой денатурации мембранных белков, что свидетельствует об индукции этих переходов конформационными превращениями мембранных белков. [c.181]

    В работе [188] сделана попытка исследовать поведение мембранных белков с помощью радикала ВVII, ковалентно связанного с белками мембран саркоплазматического ретикулума. При этом оказалось, что радикал-метка дает практически ту же самую информацию о температурных структурных переходах в мембране, что и жирорастворимый радикал СИ(5,10). Этот может быть связано с тем, что спиновая метка достаточно далеко отстоит от поверхности белка и поэтому прежде всего отражает конформационные изменения в ее липидном окружении. По-видимому, для более полной информации о белке необходимо использовать радикалы, более жестко связанные с белками мембран. [c.181]

    СОСТОИТ в том, что трехмерная структура белков полностью определяется их первичной структурой. Это равноценно утверждению, что в белке реализуется такая конформация, которая в существующих условиях термодинамически наиболее стаби,льна. Согласно другому предпол9жению, специфическая трехмерная структура реализуется в процессе синтеза и сохраняется после того, как бе,лок освободится из системы, в которой он синтезируется. В этом втором случае конформация, принимаемая белком, не обязательно должна быть термодинамически наиболее стабильной. Необходимо только, чтобы энергетический барьер, отвечающий структурным переходам трансконформациям), был достаточно высок, с тем чтобы такие переходы были [c.113]

    При работе с гемоглобином лошади и различными гемоглобинами человека было показано, что в почти нейтральных растворах эти белки могут образовывать две различные четвертичные формы. Форму Т ( плотная или дезоксигенированная форма) образует только дезокси-НЬ или Ре(П)-комплекс нормального гемоглобина, тогда как форму К ( релаксированная , окси - или литандирован-ная форма) принимают все остальные гемоглобины [33]. Формы Т и К отличаются друг от друга способом упаковки полипептидных субъединиц в тетрамер. Кристаллический НЬРе Ог лошади претерпевает резкий структурный переход при pH 5,9, а дальнейшее понижение pH ниже 5,4 приводит к образованию двух дополнительных четвертичных форм [169]. [c.150]


    Изменение ведородных связей в белке при структурных переходах 321 [c.321]

    Большой отрезок времени в истории науки о белке занимают поиски принципиальных общих черт строения молекулы белка. Этому периоду А. Н. Шамин и уделяет главное внимание. Читая книгу, невольно увлекаешься борьбой идей, логикой развития структурных представлений, видишь, как этап за этапом, непрерывно обогащаясь экспериментальными фактами, представления о строении белка постепенно переходят от смутных, неопределенных, грубых моделей в более четкие, конкретные, изощренные и, наконец, достигают вершины сегодняшнего дня — установления трехмерной структуры белка. Эта последняя часть выполнена или вернее выполняется сейчас не химическими методами, а методами рентгеноструктурного анализа. Тем не менее, результаты этих поисков основываются на прочной базе структурных представлений органической химии и их следует рассматривать как плод почти двухвековой напряженной работы человеческой мысли. Можно только удивляться, что человек, никогда не видя атомов, сумел разглядеть строение молекулы белка, состоящего из тысяч атомов, для каждого из которых уготовано свое определенное место. [c.4]

    В последние годы выполнен целый ряд расчетов МД белков, связывающих низкомолекулярные лиганды. Это расчеты миоглобина, лизоцима, калбиндина, ретиналь-связывающего белка и некоторые другие. Как правило, в таких работах анализируется характер структурных изменений белка без лиганда. В этих работах получены интересные результаты, ряд наблюдавшихся структурных переходов может быть связан с функционированием белка (см. 4 гл. XI). [c.311]

    На молекулах репликативной формы ДНК происходит синтез не только (+)цепей ДНК, но и вирус-специфических мРНК- Следует сказать, что синтез мРН К должен предшествовать появлению новых молекул (+)цепей ДНК, так как без вирус-специфических мРНК в зараженной клетке не может появиться белок А. Трансляция фаговых мРНК приводит к накоплению вирус-специфических белков, в том числе и структурных, которые — при достаточной концентрации — начинают превращаться в сложные структуры— предшественники вирусного капсида. Генерируемые на этой стадии (+)кольца в результате специфических взаимодействий с белками фага вовлекаются в процесс сборки вириона. Тем самым предотвращается ставший уже ненужным переход -Ь)цепей в репликативную фор.му. [c.274]

    Большой интерес представляют также обнаруженные флуктуации в значениях отдельных составляющих потенциальной энергии относительно величин, усредненных по 96 ПС интервалу. Эти флуктуации составляющих общей энергии варьировали от 20 до 60 кДж/моль и сохранялись достаточно долго (2-15 пс). Однако значения общей потенциальной энергии давали меньшие флуктуации (4-16 кДж/моль в течение 2-5 пс) за счет взаимной компенсации одновременно возникающих отклонений в энергиях ван-дер-ваальсовых взаимодействий и внутреннего вращения вокруг единичных связей. Наряду с долгоживущими энергетическими флуктуациями в системе происходят также долгоживущие (до 20 пс) флуктуации в положениях а-углеродных атомов. Последние скорее всего связаны с переходами макромолекулы белка из одного конформационного подсостояния в другое на поверхности общей потенциальной энергии. В пользу этого свидетельствует корреляция между временами затухания таких энергетических флуктуаций и временами структурных переходов в белке между отдельными ротамерами в боковых цепях. [c.314]

    Температуро-зависимые изменения структуры воды. Криоповреждения клеток либо других биологических структур, обусловленные изменением фазового состояния белков или липидов, существенно зависят от степени гидратации мембран. Вода стабилизирует структуру мембраны, поэтому выяснение роли воды в поддержании структуры мембраны является одним из важных подходов к пониманию механизмов криоповрежденин мембран при охлаждении и замораживании. В процессе охлаждения происходит два типа изменений в поверхностной (вици-нальной) воде кооперативные процессы, захватывающие большое количество молекул воды, и процессы, сопровождающиеся изменением ее структуры. Существенной особенностью вици-нальной воды является наличие структурных переходов при 4S и 15°С. [c.22]

    Переход в фазу геля липидов, иммобилизованных белками, приводит к снижению активности ферментов, что выявляется на графиках Аррениуса в виде изломов кривых. Эти фазовые превращения могут привести к различным последствиям нарушить активный и пассивный транспорт метаболитов и ионов, синтез веществ, производство энергии в клетке. В некоторых типах мембран (например, Е. oli) кроме фазово-структурных переходов анулярных липидов может происходить латеральное разделение липидов в бислое, что способствует формированию трансмембранных дефектов, через которые содержимое клетки может покидать цитоплазму. В развитии дефектов в мембране важную роль играют холестерин и Са +. Холестерин следует рассматривать как термальный буфер его содержимое в мембране непосредственно определяет ширину температурного интервала фазовых переходов в липидном матриксе. [c.42]

    Иногда удается экспериментально исследовать вопрос о степени взаимодействия различных частей структуры между собой, например установить, может ли один из спиральных участков нативного глобулярного белка выйти из этой структуры, не влияя при этом на остальные. Если на самом деле удалить этот участок из молекулы, скажем, с помощью ферментативного отщепления, останется ли он спиральным в изолированном состоянии Как скажется это удаление на остальной структуре Допустим, что белок или нуклеиновая кислота подвергается действию внешних факторов, например повышению температуры. Явление, состоящее в том, что малое возмущение вызывает большое изменение в третичной и вторичной структуре, называется кооперативным структурным переходом. Этот вопрос рассматривается в гл. 20 и 21. Такое превращение предполагает, что различные и (возможно) удаленные друг от друга участки молекулы могут в значительной степени взаимодействовать. Следовательно, предсказать структуру а priori будет весьма трудно из-за того, что может оказаться невозможным разбить систему на части в целях проведения расчетов. [c.26]

    Всякому структурному исследованию ДНК или РНК предшествуют выделение их из клеток, очистка и фракционирование. Поскольку в клетке нуклеиновые кислоты практически всегда находятся в комплексес белками (т. е. в вил, нуклеопротеидов), их выделение сводится в основном к очистке от белков (депротеинизации). Чаще всего нуклеиновые кислоты экстрагируют из гомогенатов клеток или очищенных клеточных органелл смесью фенол — вода В присутствии ионных детергентов (например, додецилсульфата натрия). При этом белки (и ряд других клеточных компонентов) переходят в органическую фазу, а нуклеиновая кислота остается в водной фазе. Из водного раствора ДНК или РНК осаждают спиртом. [c.10]

    Как же связаны изложеннные соображения со структурой нативного белка Иметь представление о структуре растворителя и о природе его взаимодействия с белком необходимо для того, чтобы понять, какое огромное влияние может оказывать растворитель на конформацию белковых молекул. То обстоятельство, что относительно низких концентраций мочевины или гуанидинхлорида (например, 1 молекула мочевины на 5 -s- 10 молекул HjO) часто оказывается достаточно для полного разрушения нативной структуры белка и перехода его в неупорядоченную конформацию, хорошо иллюстрирует чувствительность структуры белковых молекул к составу раствора. С другой стороны, растворитель может вызывать структурные изменения, приводящие к формированию иного, уникального, высокоупорядоченного состояния. Для этой цели, например, может быть ис- пользован 2-хлорэтанол. Белки растворимы в нем, и хотя это полярный растворитель, он обладает гораздо более слабой, чем вода, способностью образовывать водородные связи. Например, рибонуклеаза в 2-хлорэтаноле принимает другую, как полагают, значительно более совершенную спиральную конформацию, чем в воде (см. Doty, 1960). Сходные результаты были получены и для других белков. Их можно объяснить тем, что в бедных водородными связями растворителях легче образуются внутримолекулярные водородные связи. Все это еще раз подчеркивает, как велико влияние растворителя на конформацию. [c.261]

    Вторичная и третичная структуры белка формируются самопроизвольно и определяются первичной структурой его полипептидной цепи. Параллельно синтезу цепи происходят ее локальное свертывание (образование вторичной структуры) и специфическая агрегация свернутых участков (формирование третичной структуры). Эти процессы детерминируются химическими группами, отходящими от атомов а-углерода соответствующих остатков. Например, обработка мономерного фермента рибонуклеазы мягким восстанавливающим агентом (Р-меркап-тоэтанолом) и денатурирующим агентом (мочевиной или гуанидином см. ниже) приводит к инактивации белка и переходу его в неупорядоченную конформацию. Если медленно удалять денатурирующий агент и осуществлять постепенное реокисление, то вновь образуются 8—8-связи и практически восстанавливается ферментативная активность. Нет никаких оснований думать, что существует независимый генетический контроль за формированием уровней структурной организации белка вьние первичного, поскольку первичная структура специфически определяет и вторичную, и третичную, и четвертичную структуру (если она имеется)—т.е. конформацию белка. Нативной конформацией белка, в частности рибонуклеазы, по-видимому, является термодинамически наиболее устойчивая структура в данных условиях, т.е. при данных гидрофильных и гидрофобных свойствах среды. [c.48]

    Существуют и некристаллические упорядоченные структуры. По причинам, которые изложены ниже, довольно бессмысленно их систематизировать, за исключением, разве что, глобул, которые вполне дискретны, но не обязательно обладают внутренним дальним порядком. Дело в том, что путаница, царящая в монографической и журнальной литературе по поводу надмолекулярных структур, особенно в некристаллизующихся полимерах, обусловлена пренебрежением принципами статистической физики и физической кинетики. Описание полимеров на всех уровнях структурной организации не может быть полным, если наряду с морфологией не учитывается подвижность соответствующих структурных элементов . А введение подвижности ав томатически требует, при описании надмолекулярной организации в целом, не только описания пространственного распределения и -сил взаимосвязи структурных элементов, но и усреднения во времени (ср. стр. 45). При этом сразу выявляется третий признак классификации структур по их стабильности. Как известно, по отношению к так называемой денатурации все глобулярные белки принято подразделять на кинетически и термодинамически стабильные. ЭтОт же принцип должен реализоваться и по отношению к надмолекулярным уровням структурной организации полимеров. Все дискретные организованные структуры являются термодинамически стабильными отдельные организованные морфозы (типа сферолитов, например) могут обладать определенной — и регистрируемой, (см. гл. VII) — внутренней и внешней подвижностью, но ниже температуры фазового перехода они вполне устойчивы в отсутствие внешних силовых полей их время жизни т->оо. [c.47]

    Переход к новому источнику рентгеновского излучения ослабил требования, предъявляемые к размерам кристаллов, что особенно важно в структурном анализе высокомолекулярных белков и сложных комплексов, имеющих крупные элементарные ячейки. Сплошной спектр синхротронной радиации и легкость выбора любой длины волны монохроматического излучения сделали возможным подойти к решению фазовой проблемы и разработать метод мультиволновой аномальной дифракции, требующий для решения фазовой проблемы лишь одного кристаллического образца. Существенным дополнением к этому методу стал генно-инженерный способ получения в ауксотрофных клетках аминокислотных последовательностей, в которых все остатки метионина заменены на селенометионин. Использование [8е-Ме1]-белков не только освобождало [c.74]

    Пространственное строение и другие свойства синтетических полимеров в растворе отвечают состоянию статистического клубка и описываются усредненными параметрами. Молекулярная поворотно-изомерная теория синтетических полимеров, являющаяся составной частью статистической физики, была разработана в 1950-е годы М.В. Волькенштей-иом [47] и позднее развита Т.М. Бирштейном и О.Б. Птицыным [48] и П. Флори [49]. Основы теории фазовых переходов полимеров были заложены в 1968 г. И.М. Лифшицем [50]. Хотя белки являются полимерами и их пространственное строение также определяется поворотной изомерией, теи не менее механизм структурной организации и особенности нативных конформаций белковых молекул не могут быть рассмотрены в рамках отмеченных теорий, базирующихся на равновесной термодинамике и конфигурационной статистике полимерных цепей. [c.101]

    Итак, были рассмотрены результаты теоретического конформационного анализа совместно с данными экспериментального исследования пространственного строения серии метиламидов N-ацетил-а-аминокислот и их N-метильных производных в различных средах. В основу интерпретации опытного материал ыли положены геометрические и энергетические характеристики ограниченного набора оптимальных конформаций монопептидов, изученных теоретически. При этом обнаружилось полное соответствие между всеми вьшодами теоретического анализа, с одной сто-роньг, и эспериментальными данными, с другой. В результате была установлена непосредственная связь между оптимальными формами рассчитанных монопептидов и соответствующими опытными данными, полученными с помощью различных физических методов теоретический и экспериментальный подходы не обнаружили противоречий в оценке тенденции смещения положений конформационного равновесия у изученных монопептидов при переходе от неполярных к полярным растворам. Тем самым было показано, что использованные в расчете потенциальные функции и параметризация адекватно отражают реальные взаимодействия атомов одного аминокислотного остатка и удовлетворительно имитируют влияние на эти ближайшие взаимодействия окружающей среды. Расчетный метод конформационного анализа выдержал, таким образом, свое первое испытание на пути к решению задачи структурной организации белков. Это, пожалуй, самый важный вывод из проведенного нами комплексного теоретического и экспериментального исследования. Он, конечно, не решал еще многих проблем, но послужил надежным обоснованием дл следующего шага - анализа конформационных возможностей монопеп-тидов всех остальных стандартных аминокислот. [c.172]

    Таким образом, согласно бифуркационной теории, ни один из этапов механизма спонтанного свертывания белка, включая окончательное построение его биологически активной трехмерной структуры, не содержит селекции практически бесконечного множества мыслимых конформационных состояний аминокислотной последовательности. Следовательно, если описанный механизм адекватен реальному процессу, т.е. если бифуркационная теория верна, то разработанный на ее основе метод расчета вообще не встречается с проблемой поиска глобального минимума энергии на многомерной потенциальной поверхности. Содержание конформационного анализа в этом случае распадается на две также непростые задачи. Одна из них заключается в оптимизации составляющих белковую цепь олигопептидных участков в их свободном состоянии при вариации всех возможных комбинаций знамений двугранных углов вращения каждого отдельного фрагмента. Цель решения этой задачи состоит в идентификации конформационно жестких и лабильных участков аминокислотной поверхности. Вторая задача включает анализ невалентных взаимодействий тех и других и многоступенчатую минимизацию энергии с постепенным увеличением длины цепи и раскрепощением конформационных параметров жестких участков. В конечном счете будет получена количественная оценка конформационных возможностей всей белковой молекулы и выявлена ее глобальная нативная трехмерная структура. Этот вывод справедлив, однако, лишь в принципе, а реально ни та, ни другая задача не поддаются решению без введения дополнительных положений о структурной организации нативной конформации белка. Предоставленная бифуркационной теорией возможность перехода от расчета целой белковой цепи к расчету отдельных фрагментов и далее анализу комбинаций их пространственных форм в огромной степени упростила проблему, но не сделала ее практически разрешимой. Причина та же - множественность локальных минимумов энергии на потенциальной поверхности, правда, теперь уже не всей белковой цепи, а ее конформационно жестких и лабильных участков, которые могут состоять из 10-12 аминокислотных остатков. Как известно, независимому и строгому анализу поддаются [c.248]

    В процессах денатурации и ренатурации аминокислотной последовательности проявляется прямая связь между химическим и пространственным строением молекулы белка. Переход беспорядочно флуктуирующей белковой цепи в детерминированную трехмерную структуру и обратный процесс - переход нативной конформации белка в состояние статистического клубка есть не что иное, как формирование и разрушение тех самых внутриостаточных и межостаточных взаимодействий валентно-йесвязанных атомов, теоретическому рассмотрению и априорному расчету которых были посвящены предшествующие главы книги. Очевидно, изучение механизмов денатурации и ренатурации представляется совершенно необходимым для познания принципов структурной организации белковых макромолекул. С другой стороны, любая теоретическая разработка проблемы пространственного строения белков не может считаться завершенной без описания и аргументированной трактовки особенностей уникального процесса свертывания аминокислотной последовательности в высокоорганизованную структуру. [c.471]


Смотреть страницы где упоминается термин Белки структурные переходы: [c.255]    [c.255]    [c.183]    [c.52]    [c.177]    [c.46]    [c.311]    [c.88]    [c.88]    [c.4]    [c.253]    [c.401]    [c.518]    [c.54]    [c.69]    [c.77]    [c.83]    [c.537]   
Кристаллизация полимеров (1966) -- [ c.78 ]




ПОИСК







© 2025 chem21.info Реклама на сайте