Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические основы электрохимической коррозии

    ТЕРМОДИНАМИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ [c.240]

    Многочисленные известные, а также все вновь появляющиеся методы защиты металлов от коррозии могут быть рассмотрены на основе характера оказываемого ими торможения на ту или иную стадию электрохимической коррозии или изменения ими степени термодинамической нестабильности системы. В этом случае в соответствии с основным выражением электрохимической коррозии (1) методы защиты металлов можно классифицировать следующим образом (см. табл. 2). В качестве способов защиты находят практическое применение как методы, базирующиеся на уменьшении степени термодинамической нестабильности, так и методы, основанные на торможении кинетики катодных и анодных процессов, и в несколько меньшей степени — методы, действие которых обусловлено увеличением общего омического сопротивления коррозионной системы. [c.10]


    С научной точки зрения рационально различные методы борьбы с коррозией рассматривать не на основе технологии их осуществления или условий их применения, как это обычно делается, а исходя из характера торможения данным методом защиты основных ступеней процесса электрохимической коррозии или изменения термодинамической нестабильности коррозионной системы. [c.17]

    Четвертая глава книги посвящена технически хорошо разработанной области электрохимии — анодному поведению металлов. Ее автор, известный специалист в области коррозии профессор Кембриджского университета Т. П. Хор, вначале уделил большое внимание термодинамической основе проблемы, в связи с чем довольно подробно рассмотрел диаграммы потенциал — pH, значение которых для оценки коррозионных свойств металлов в работах ряда западных школ несколько переоценивается. Несомненно большой интерес представляет вторая часть главы, в которой на основании общих закономерностей электрохимической кинетики рассмотрена кинетика самопроизвольного растворения металлов и их анодное окисление с образованием как растворимых, так и нерастворимых продуктов. В связи с этим рассмотрено также явление пассивности. [c.7]

    Современное представление о механизме электрохимической коррозии позволяет наиболее точно определить явление пассивности на основе характеристики контроля коррозионного процесса (см. гл. VI, 3). По нашему мнению, на основании развитой теории коррозии наиболее рационально определять явление пассивности металлов следующим образом пассивность — состояние повышенной коррозионной устойчивости металла или сплава в условиях, когда с термодинамической точки зрения они являются вполне реакционноспособными), вызванное торможением анодного процесса, т. е. пассивным состоянием будет состояние коррозионной устойчивости, вызванное преимущественным анодным контролем. [c.179]

    В отношении механизма накопления устойчивого компонента на поверхности существуют две точки зрения. ЭтО или предварительный переход устойчивого компонента в виде ионов в раствор и затем вторичное электрохимическое выделение его на поверхности (электрокристаллизация) в виде собственной фазы, или постепенное накопление более стойкого компонента на поверхности вследствие избирательного растворения более активной основы сплава. При этом допускается возможность последующей миграции атомов более стойкого компонента по поверхности и также кристаллизации его в виде собственной фазы. Нам кажется, что в отношении электроположительных (благородных) компонентов (палладий, платина), термодинамически устойчивых в условиях коррозии, более вероятным является второй механизм. [c.35]


    Механизм коррозии металла в почве определяется термодинамической вероятностью процесса. В почве, которую можно рассматривать как гетерогенный электролит, скорость коррозионного процесса по катодным и анодным реакциям, т, е. электрохимической коррозии, во много раз больше, чем химической. Поэтому принято считать, что почвенная коррозия протекает по механизму электрохимической коррозии, химическая коррозия в почвах практически отсутствует. Исходя из этого положения, явления, лежащие в основе почвенной коррозии, можно объяснить с позиций теории коррозии металлов в электролитах [2]. Известно, что разные металлы в различной степени подвержены коррозии. Чем легче совершается переход дтомов металла в ионы тем больше выделяется свободной энергии и тем менее коррозионностоек данный металл. Мерой этой энергии является значение нормального потенциала. [c.11]

    При рассмотрении электрохимической коррозии выделяют влияние на скорость растворения внутренних, ирисущих металлу, факторов и внешних факторов, относящихся к коррозионной среде. К внутренним относятся факторы, связанные с природой металла, его составом, структурой, состоянием поверхности, напряжениями и др. Важнейшей характеристикой природы металла являются его термодинамическая устойчивость и способность к кинетическому торможению анодного растворения (пассивация). Имеется определенная связь между положением металла в Периодической системе элементов Д. И. Менделеева и их коррозионной стойкостью. Для металлических сплавов на основе твердых растворов характерно скачкообразное изменение коррозионных свойств при концентрациях, равных гг/8 атомной доли более благородного компонента (правило Таммана), в связи с образованием плоскостей упорядоченной структуры, обогащенных атомами благородного компонента. Правило Таммана было подтверждено на ряде твердых растворов, а также иа технических пассивирующихся сплавах  [c.23]

    В этом разделе, проводится термодинамический анализ начальных этапов псевдоселективной коррозии и селективной коррозии с фазовым превращением, а также оценивается влияние некоторых условий на склонность сплавов по отно-щению к таким видам разрущений. В основу анализа положен экспериментальный факт повыщенной термодинамической активности электрохимически положительного компонента В на поверхности растворяющегося оплава и введенная в связи с этим схема превращений (3.14) [46]. Существенным элементом последней, как уже отмечалось, является двухмерная метастабильная фаза В, предопределяющая все возможные процессы с участием В.,  [c.119]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]

    Электрохимическая коррозия представляет собой сложный многоступенчатый процесс с цепью химических реакций, характеризуемый анодным и катодным процессами, протекающими взаимосвязанно. Известно, что поверхность любого даже самого чистого металла гетерогенна из-за различной ориентации кристаллов и фаз, на ней всегда есть участки с различными электродными потенциалами, которые в растворе электролита будут представлять собой систему короткозамкнутых гальванических пар. Применяемые в производстве серной кислоты металлы термодинамически не стабильны и способны легко вступать во взаимодействие с раствором электролита. Коррозионная стойкость металлов и сплавов определяется образованием на их поверхности абсорбционных и фазовых слоев, тормозящих протекание анодного и катодного процессов. Эти металлы и сплавы на их основе получили название пассивирующихся. [c.326]


    Хорошим подтверждением электрохимической субмикронеоднородности поверхности сплавов может служить экспериментально наблюдаемое изменение соотношения концентраций компонентов в поверхностных слоях подобных сплавов в начальных стадиях коррозии, т. е. при протекании компонентно избирательной коррозии. Например, установлено, что в сплавах на основе титана или в нержавеющих сталях наблюдается обогащение поверхности введенными в сплав более термодинамически стабильными катодными добавками (Р(1, Р1) [20, 42, 43]. В. В. Скорчелет-ти и его сотрудниками в сплавах Си—Ni в активном состоянии было зарегистрировано обогащение поверхности медью [41, с. 165]. При коррозии нержавеющих сталей, в зависимости от условий, авторами совместно с Л. Н. Волковым, установлена возможность накопления не только палладия и платины, но и других, более электроположительных по сравнению с железом, компонентов, например никеля, меди и рения [41, с. 164], кремния и молибдена [20, с. 39], а в условиях возможной пассивации даже и менее электроположительных, но более пассивирующихся компонентов, например хрома. Это вытекает из исследований А. М. Сухотина [44], авторов [20, 43], И. К. Марша-кова с сотрудниками [45]. Особенно убедительно это было доказано прямыми определениями с использованием высокопрецизионного -спектрометрического изотопного метода в работах, проведенных в институте им. Л. Я. Карпова под руководством Я. М. Колотыркина [46]. [c.68]

    В отношенпи механизма накопления благородного компонента на поверхности, существуют две точки зрения, Это или предварительный переход благородного компонента в виде ионов в раствор и затем вторичное электрохимическое выделение его на поверхности (электрокристаллизация) в виде собственной фазы, или постепенное накопление благородного компонента на поверхности вследствие избирательного растворения более активной основы сплава. При этом возможно обогащение тонкого поверхностного слоя твердого раствора благородным компонентом (на толщину протекания объемной взаимной диффузии атомов, входящих в сплав компонентов). Еще более вероятным является процесс поверхностной диффузии благородных атомов, так как скорости поверхностной диффузии могут значительно превосходить смюрость об1>емнои диффузии. При JTOM атомы благородного компонента могут кристаллизоваться па поверхности в виде самостоятельной фазы. Нам кажется, что в отношении благородных компонентов (палладий, платина), термодинамически устойчивых в условиях коррозии, более вероятным является второй механизм. [c.171]


Смотреть страницы где упоминается термин Термодинамические основы электрохимической коррозии: [c.553]   
Смотреть главы в:

Практикум по физической химии -> Термодинамические основы электрохимической коррозии

Практикум по физической химии -> Термодинамические основы электрохимической коррозии




ПОИСК





Смотрите так же термины и статьи:

Коррозия электрохимическая

Основы коррозии



© 2025 chem21.info Реклама на сайте