Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия металлов механизм

    Ингибиторами, или замедлителями коррозии называют вещества, введение которых в коррозионную среду вызывает значительное снижение скорости коррозии металла. Механизм защитного действия ингибиторов в основном заключается в образовании на [c.187]

    По механизму процесса различают химическую и электрохимическую коррозию металлов  [c.12]


    Результаты электрохимических исследований и корозионных испытаний свидетельствуют о том, что коррозия металлов в обводненных нефтепродуктах определяется в основном склонностью углеводородных и неуглеводородных компонентов к образованию агрессивных водорастворимых продуктов окисления. Поэтому наиболее объективные сведения о механизме коррозии металлов в обводненных нефтепродуктах были получены при исследованиях на модельных системах (водных растворах различных соединений). [c.287]

    Преобладающим механизмом коррозии металлов в неэлектролитах является химический, т. е. окисление металла и восстановление окислительного компонента коррозионной среды протекают [c.140]

    При изучении коррозионных свойств нефтепродуктов необходимо рассматривать две разные системы нефтепродукт + металл и нефтепродукт + вода + металл. В первом случае скорость коррозии металлов будет определяться наличием в нефтепродуктах коррозионно-агрессивных веществ и их способностью непосредственно взаимодействовать с металлами (химическая коррозия). Во втором случае корозия металлов в нефтепродуктах должна развиваться преимущественно по электрохимическому механизму. [c.282]

    Меченые атомы во многих случаях позволяют установить, как происходит обмен между ионами в растворе и поверхностью металла, исследовать и технологически рационально проводить процессы очистки металлов, исследовать процессы коррозии металлов, механизм действия ингибиторов коррозии металлов (например, образование и состав фосфатных и хроматных пленок на поверхности металлов) и т. д. [c.422]

    Для изучения механизма коррозии металлов в обводненных нефтепрод тах и для разработки эффективных практических мер борьбы с электрохимической коррозией металлов в топливах, маслах и смазках необходимо знать состав водных конденсатов, образующихся на металлической поверхности. Хроматографическими и спектрофотометрическими исследованиями показано, что водные конденсаты, образующиеся на металлических поверхностях, имеют довольно сложный состав и содержат, как правило, продукты окисления углеводородных и неуглеводородных молекул. Эти конденсаты представляют собой электролиты, в присутствии которых развиваются процессы электрохимической коррозии металлов. [c.283]

    Даны современные представления о термодинамике и кинетике окисления металлов, механизме образования и законах роста различных пленок, рассмотрены механизм и различные виды электрохимической коррозии, описаны важнейшие методы исследования коррозионных процессов. [c.2]


    Процессы коррозии неметаллических полимерных материалов отличаются от процессов коррозии металлов механизм их изучен еще недостаточно. Так, если коррозия металлов происходит главным образом на границе раздела двух фаз металл—среда, то при коррозии полимерных материалов набухание и растворение под влиянием среды не только происходит на поверхности, но и распространяется в глубь материала и обусловливается процессами диффузии. При этом определяющими факторами являются природа материала и коррозионной сре- [c.10]

    Основной причиной опасности процессов центрифугирования является возможный разрыв барабана под действием центробежной силы. При нормальных скоростях разрыв барабана может произойти вследствие износа материала или деталей вращающего механизма от многолетней работы без соответствующего ремонта, нарушения гуммировки и другого защитного покрытия при работе с агрессивными средами и коррозии металла. Прочность, особенно в местах соединения, часто настолько уменьшается, что барабан не выдерживает напряжения, на которое рассчитан. [c.160]

    Вопросы коррозии металлов в топливах, маслах, смазках и специальных жидкостях и защиты от нее двигателей и механизмов занимают важное место в химмотологии. Это ясно из следующих цифр. Ежегодные потери металлов от коррозии в мире оцениваются суммой более 80 млрд, руб., безвозвратно теряется [c.278]

    Наконец, может происходить растворение компонентов защитных присадок в воде и торможение коррозии металлов в электролитах по электрохимическому механизму. В этом случае компоненты присадок будут выступать в роли водорастворимых ингибиторов коррозии. По этому механизму действуют многие ингибиторы атмосферной коррозии металлов. [c.293]

    Непосредственное отношение к химмотологии имеет поведение металлов (и защита их от коррозии) в контакте с топливами, смазочными материалами и специальными жидкостями, особенно в условиях эксплуатации двигателей и механизмов. В связи с этим в данной книге уделено внимание в основном теории коррозии металлов в нефтепродуктах и механизму действия ингибиторов коррозии в топливах и смазочных материалах. Отметим особо важную роль коррозионно-механического износа деталей двигателей и механизмов, который во многих случаях определяет ресурс их работы. [c.281]

    Исследование коррозионных свойств нефтепродуктов и механизма коррозии металлов в системе нефтепродукт вода позволяет сформулировать, три общие для нефтепродуктов закономерности. [c.291]

    МЕХАНИЗМ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ [c.180]

    Деление сернистых соединений на активные и неактивные распространяется только на коррозию металлов при обычных температурах хранения и применения. В процессе сгорания бензино-воздушной смеси в двигателе все сернистые соединения образуют коррозионно-агрессивные оксиды ЗОг и 50з, которые вызывают коррозионный износ цилиндро-поршневой группы и всех деталей выпускного тракта. Механизм коррозионного действия их определяется температурой среды. [c.32]

    Основным фактором, определяющим механизм и скорость атмосферной коррозии, является степень увлажненности поверхности корродирующих металлов. По степени увлажненности корродирующей поверхности металлов различают следующие типы атмосферной коррозии металлов  [c.372]

    Возможны следующие механизмы образования дефектов, находящихся в термодинамическом равновесии с кристаллом продуктов химической коррозии металлов в целом. [c.35]

    Жаропрочность ряда металлов можно повысить, упрочнив металлическую основу введением в нее мелкодисперсных частиц тугоплавких соединений, главным образом различных окислов (материалы типа САП, т. е. спеченного алюминиевого порошка). Жаростойкость этих материалов, являюш,ихся перспективными для применения в различных областях техники, и механизм их окисления исследованы автором, Б. К. Опарой, Т. Г. Кравченко и О. А. Пашковой на кафедре коррозии металлов МИСиС. [c.109]

    Описанное выше соотношение между скоростью химической коррозии металлов и температурой может быть осложнено или нарушено, если с изменением температуры изменяется структура или другие свойства металла или образующейся на нем пленки продуктов коррозии. Довольно часто прямая lg к (или lg г/) = = / (1/Т) имеет изломы (рис. 84 и 85) и ее отдельным участкам соответствуют разные значения эффективной энергии активации Q, характеризующие зависимость скорости процесса от температуры и обусловленные качественными изменениями в металле, в образующейся пленке продуктов коррозии и в механизме протекания процесса. [c.124]

    На основании значений /внутр при разных значениях потенциала может быть построена зависимость /внутр = / (У), т. е. зависимость скорости коррозии металла от потенциала, представляющая большой самостоятельный интерес и необходимая, например, для установления доли электрохимического механизма коррозионного процесса (см. рис. 190), на котором абсцисса точки s даст /max = /э = х, Т. е. числитель правой части уравнения (627) для расчета Ьэ = х. [c.285]


    Попадание в неэлектролиты воды значительно активирует действие примесей в неэлектролитах и вызывает, особенно в присутствии солей или кислот, интенсивное протекание электрохимической коррозии металлов (см. ч. И), т. е. изменяет механизм коррозионного процесса. [c.142]

    Мысль, о том, что механизм растворения (электрохимической коррозии) металлов принципиально отличается от механизма растворения солей, была впервые высказана М. В. Ломоносовым в 1750 г. на основании его исследований по растворению металлов в кислотах. [c.148]

    В теории необратимых электродных потенциалов металлов А. Н. Фрумкина (см. с. 176), в которой сформулирован электрохимический механизм саморастворения (коррозии) металлов в электролитах, рассматривалось растворение металла с однородной (гомогенной) поверхностью, т. е. предполагалось, что скорость протекающих на поверхности электрохимических реакций одинакова на всех участках и что все точки поверхности обладают одним и тем же значением потенциала (т. е. что поверхность является строго эквипотенциальной). Автор этой теории считает, что такое допущение вполне законно для жидкого металла, например для поверхности ртути или амальгамного электрода, которая может служить образцом однород-. ной поверхности. Относительно [c.185]

    Первопричиной коррозии металлов, в том числе и электрохимической коррозии, является их термодинамическая неустойчивость. При взаимодействии с электролитами металлы самопроизвольно растворяются, переходя в более устойчивое окисленное (ионное) состояние. Большой теоретический и практический интерес представляет механизм этого саморастворения металлов, т. е. механизм коррозионного процесса, его основные закономерности, скорость протекания процесса и характер коррозионного разрушения. [c.180]

    Электрохимический механизм в виде протекающей с участием свободных электронов электрохимической реакции, при которой ионизация атомов металла [см. уравнение (271)] и восстановление окислительного компонента коррозионной среды [см. уравнение (326) ] проходят не в одном акте и их скорости зависят от величины электродного потенциала металла, имеет место в подавляющем большинстве случаев коррозии металлов в электролитах и является, таким образом преобладающим. [c.181]

    Возможность подразделения процесса растворения металлов в электролитах на два сопряженных процесса — анодный и катодный — облегчает в большинстве случаев его протекание по сравнению с химическим взаимодействием. При электрохимическом взаимодействии окислитель играет лишь роль деполяризатора, отнимающего валентные электроны металла и обеспечивающего переход металла в ионное состояние, но не вступает с ним при этом в химическое соединение [вторичные процессы и продукты коррозии при электрохимическом механизме коррозии металлов могут иметь место (см. с. 212), но они не обязательны]. [c.181]

    Морская коррозия металлов протекает по электрохимическому механизму преимущественно с кислородной деполяризацией. При коррозии в морской воде имеет место смешанный диффузионнокинетический катодный контроль (рис. 283), который в зависимости от условий может переходить в преимущественно диффузионный (неподвижная морская вода, наличие на металле большого количества вторичных продуктов коррозии) или преимущественно кинетический (при быстром движении морской воды или судка). Катодный процесс коррозии при этом идет на поверхности [c.398]

    Как показали исследования в НИФХИ им. Л. Я- Карпова и на кафедре коррозии металлов МИСиС, коррозия ряда металлов в кислых и нейтральных электролитах протекает иногда по смешанному химико-электрохимическому или по чисто химическому механизму. Одним из важных признаков химического механизма коррозии металла является независимость скорости процесса от потенциала. [c.279]

    Естественно, что коррозию металла в электролите как электрохимический процесс можно рассматривать лишь при значительном преобладании доли электрохимического механизма процесса, т. е. когда Оэ = х > где = ЮО —Ds x- [c.281]

    Мокрая атмосферная коррозия металлов по своему механизму приближается к электрохимической коррозии при полном погружении металла в электролит, отличаясь от нее меньшей затрудненностью диффузии кислорода тонкими слоями электролита и на- [c.373]

    В подавляющем большинстве случаев, за исключением очень сухих почв и грунтов, подземная коррозия металлов протекает по электрохимическому механизму. [c.384]

    Кинетическое истолкование явлений электрохимической коррозии было впервые предложено А. Н. Фрумкиным (1932), который обратил внимание на то, что процесс разложения амальгам щелочных металлов подчиняется законам электрохимической кинетики. Эта идея была развита затем количественно Вагнером и Траудом (1938), которым удалось показать хорошее согласие теории с экс-периментальными данными по скоростям разложения амальгам Цинка. Близкие взгляды были высказаны А. И. Шультиным, Я- В. Дурдиным и рядом других авторов. Плодотворность использования закономерностей электрохимической кинетики для количественного описания коррозии твердых металлов была показана Я. М. Колотыркиным, а также В. В. Скорчеллетти, М. Грином и др. Работы этих ученых оказали значительное влияние на развитие современных взглядов на процессы коррозии и способствовали установлению связи между электрохимической наукой и учением о коррозии металлов. Кинетическую теорию коррозии часто неудачно называют гомогенно-электрохимической теорией или гомогенно-электрохимическим механизмом коррозии. К процессу коррозии, всегда протекающему на границе раздела минимум двух фаз, т. е. по своей природе типично гетерогенному процессу, не следует применять термин гомогенный . Правильнее называть эту теорию коррозии кинетической теорией. [c.493]

    Коррозия металлов в системах нефтепродукт + вода развивается преимущественно по электрохимическому механизму. Этому способствует специфическая конденсация воды (в виде пленок и объемов) на боковых и донных участках резервуаров, топливных и масляных систем под объемами и лленками нефтепродуктов, что приводит к автоматической дифференциации поверхности металла на анодные (днища, застойные зоны, низкие участки трубопроводов) и катодные (боковые поверхности) участки независимо от того, имеется ли в изделиях контакт разнородных металлов или изделие (например, резервуар) изготовлено из одного и того же материала. [c.291]

    Механизм сухой атмосферной коррозии металлов аналогичен химическому процессу образования и роста на металлах пленок продуктов коррозии, описанному в ч. I. Процесс сухой атмосферной коррозии металлов сначала протекает быстро, но с большим торможением во времени так, что через некоторое время, порядка нес <ольких или десятков минут, устанавливается практически постоянная и очень незначительная скорость (рис. 263), что обусловлено невысокими температурами атмосферного воздуха. Так образуются на металлах в кислороде или сухом воздухе тонкие окисные пленки, и поверхность металлов тускнеет. Если в воздухе содержатся другие газы, например сернистые соединения, защитные свойства пленки образующихся продуктов коррозии могут снизиться, а скорость коррозии в связи с этим несколько возрасти. Однако, как правило, сухая атмосферная коррозия не приводит к существенному коррозионному разрушению металлических конструкций. [c.373]

    Доля электрохимического механизма коррозии металла /Зэ=х при допущении, что скорость химической коррозии постоянна, т. е. ij. M = onst и не зависит от потенциала V, может быть рассчитана по уравнению [c.281]

    Этот метод может быть использован для определения тока саморастворения (коррозии) металла и установления механизма процесса коррозии металла совпадение величины рассчитанного таким методом коррозионного тока /э = х со значением /опытн. полученным непосредственным определением коррозионных потерь металла (I из Ат), подтверждает электрохимический механизм процесса расхождение этих значений, когда /э = х < /опыта указывает на наличие растворения металла по неэлектрохимическому, т. е. химическому механизму. [c.286]

    Характер адсорбции на отдельных кристаллйграфических плоскостях. При образовании защитных пленок может иметь значение не только плотность упаковки плоскости кристалла, но и соответствие кристаллографической структуры поверхности металла и возникающей пленки. При большом несоответствии в пленке возникают механические напряжения, приводящие к ее разрушению. Иногда кристаллографическая ориентация оказывает влияние на механизмы протекания анодного и катодного процессов электрохимической коррозии металлов. [c.327]

    Эффективная энергия активации растворения металлов (железа, никеля, алюминия) в электролитах по химическому механизму, согласно данным Г. Г. Пенова, Т. К. Атанасян, С. П. Кузнецовой и др., в 1,5—2,0 раза больше, чем при растворении их с преобладанием электрохимического механизма, что находится в хорошем соответствии с теорией электрохимической коррозии металлов и подтверждает наличие химического механизма коррозии металлов в электролитах. [c.357]

    Одно из принциниальных различий между этими двумя механизмами коррозии металлов заключается в том, что при электрохимической коррозии одновременно происходят два процесса окислительный (растворение металла на одном участке) и восстановительный (выделение катиона из раствора, восстановление кислорода и других окислителей на другом участке металла). Например, в результате растнорения цинка в серной кислоте образуются ионы цинка и выделяется газообразный водород при действии воды железо переходит в окисное или гидроокис-ное состояние и восстанавливается кислород с образованием гидроксильных ПОПОВ. При химической коррозии разрушение металлической пoвeJЗXнo ти осуществляется без разделения на отдельные стадии и, кроме того, продукты коррозии образуются непосредственно на тех участках поверхности металла, где происходит его разрушение. [c.6]


Смотреть страницы где упоминается термин Коррозия металлов механизм: [c.10]    [c.141]    [c.372]   
Изотопы в органической химии (1961) -- [ c.609 , c.610 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая коррозия металлов механизм

Кабанов. Исследование механизма коррозии металлов с помощью вращающегося дискового электрода с кольцом

Кинетика и механизм катодных и анодных процессов при кислотной коррозии металлов

Кинетика и механизм электрохимической коррозии металлов

Классификация и механизм атмосферной коррозии металлов

Коррозия металлов

Коррозия металлов коррозии

Механизм и классификация подземной коррозии металлов

Механизм и особенности коррозии металлов в расплавленных солях

Механизм и особенности морской коррозии металлов

Механизм сероводородной коррозии металлов

Механизм химической коррозии. Защитные пленки на металлах

Механизм электрохимической коррозии металлов

Теоретические основы и механизм коррозии металлов в нефтепродуктах

Электродные потенциалы и электрохимический механизм коррозии металлов

Электрохимический и химический механизмы коррозии металлов



© 2025 chem21.info Реклама на сайте