Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конструкционные материалы и оценка их механических свойств

    Долговечность полимерных материалов, зависящая от их природы и физико-химических свойств среды, определяется сорбцией и диффузией среды, тепловыми флуктуациями и гетерогенными химическими реакциями. Наложение термофлуктуациопиых, адсорбционных и химических процессов и разница в скоростях нх протекания приводят к экспериментально наблюдаемому перегибу линий долговечности в агрессивных средах ио сравнению с испытаниями иа воздухе. Это обстоятельство требует осторожного отношения к ирименению различных эксиресс-методов и экстраполяции результатов, полученных ири таких форсированных испытаниях, особенно при высоких значениях напряжений, для прогнозирования длительной работоспособности материала, т. е. при небольших значениях механических напряжений. Как показывает анализ многочисленных экспериментальных исследовапий, полная и достоверная оценка практической пригодности и работоспособности напряженных конструкционных пластмасс в агрессивных средах может быть произведена при уровнях механических напряжений в диапазоне 20— 60 % от разрушающих. В этом диапазоне разрушение происходит за время, в течение которого наблюдают практическое насыщение материала жидкой средой и совместный эффект воздействия механического и химического факторов на кинетику разрушения. Экстраполяция этого участка общей кривой долговечности в область низких напряжений для прогнозирования длительного срока эксплуатации материала может привести к занижению времени и, следовательно, к повышению ресурса эксплуатации и надежности конструкции. Совместное решение двух экспоненциальных уравнений, описывающих долговечность в агрессивной среде и на воздухе, дает возможность определить напряжение, выше которого агрессивная среда не оказывает влияния иа характер разрушения материала. [c.43]


    ОБ ОЦЕНКЕ МЕХАНИЧЕСКИХ СВОЙСТВ РЕЗИНЫ КАК КОНСТРУКЦИОННОГО МАТЕРИАЛА [c.156]

    Для оценки механических свойств, которые определяют поведение металлов и других конструкционных материалов в эксплуатации (конструктивная прочность) и при обработке (сопротивление деформированию и пластичность) проводят испытания, возможно более точно имитирующие рабочие условия. Для наиболее правильного прогнозирования поведения матери ла в будущих конструкциях нормативами, стандартами, техническими условиями или опытом определен для каждого вн а оборудования комплекс таких испытаний. [c.275]

    Сравнительная оценка механических свойств стеклопластов как конструкционного материала показана в табл. 32— 37 и на рис. 23—29. [c.132]

    Для оценки пригодности гафния как конструкционного материала существенное значение имеют его механические свойства. Изучены такие механические свойства гафния, как твердость, ползучесть, прочность на разрыв, продольное и поперечное растяжение, усталость металла и др. Исследовалось влияние на эти свойства примесей, температуры, предварительной термической обработки образцов, действие ядерного облучения, влияние способа переплавки металла и т. д. [c.105]

    Интересно, что некоторые методы испытания механических свойств, обеспечивающие получение эксплуатационных показателей материала, характеризуют так-лсе технологические свойства. Типичными в этом отно-ношении являются широко распространенные испытания на разрывных машинах. Некоторые поли.мерные материалы в процессе таких испытаний удлиняются на сотни процентов. С точки зрения эксплуатации изделий из испытываемого материала свойства удлиненного образца не представляют интереса, поскольку в условиях эксплуатации изделие не должно иметь таких больших деформаций. Технологу важно знать, как изменяются свойства образца в процессе растяжения, поскольку аналогичную вытяжку применяют иногда при изготовлении изделий с целью их упрочнения. Некоторые методы технологических испытаний, наоборот, можно использовать для ориентировочной оценки конструкционных свойств. Такая взаимосвязь конструкционных и технологических свойств характерна для пластмасс. [c.9]

    Проводя испытания механических свойств различных материалов при одной и той же температуре, мы не можем решить вопрос о применимости тех или иных материалов для изготовления изделий, работающих в различных температурных условиях. Такие испытания дают оценку материала, не отражающую влияния температу ры на сопоставляемые свойства. Оценка свойств материала при одной температуре удовлетворяет многим практическим требованиям. Однако с развитием техники расширилась область температур, при которых эксплуатируются изделия, и появилась необходимость учитывать влияние температуры на свойства конструкционных материалов. Это особенно важно в отношении новых материалов, свойства которых сильно зависят от температуры. [c.50]


    Прочность пряжи и нитей, ввиду особенностей их структуры, трудно рассчитать математически, исходя из прочности волокон их составляющих. Технические же характеристики, получаемые оценкой образцов определенной длины, не дают общей зависимости для суждения по ним о механических свойствах материала в образцах иных габаритов или в иных конструкционных формах-Поэтому для оценки свойств текстильных конструкций недостаточно характеризовать их лишь геометрическими параметрами, а следует принимать во внимание также вес материала. На этой базе и могут быть даны добавочные (удельные) характеристики пряжи расчетный диаметр пряжи, разрывная длина и другие. [c.306]

    Никелевые покрытия и плакирующие сплавы на основе никеля используют в зарубежной практике для защиты от коррозии элементов оборудования глубоких нефтяных скважин (труб, вентилей). В работе [48] приведены результаты испытания труб, изготовленных из стали марки AISI 4130 с плакировкой никелевым сплавом 625, полученных методом горячего изостатического прессования. Толщина плакирующего слоя биметалла составляла 29 и 4 мкм. Испытания включали анализ изменения механических свойств материалов после вьщержки в хлорсодержащей среде в присутствии сероводорода, оценку стойкости их к коррозионному растрескиванию и питтинговой коррозии. Результаты лабораторных и промышленных испытаний показали высокие эксплуатационные свойства биметалла при использовании в качестве конструкционного материала для оборудования высокоагрессивных сероводородсодержащих глубоких скважин. [c.96]

    Углеродистые стали в зависимости от состава и состояния могут иметь различную структуру и свойства, которые в той или иной степени отражают их способность сопротивляться гидроэрозин. Однако при разрушении металла в микрообъемах наблюдается большая неоднородность, и усредненные механические характеристики оказываются непригодными для оценки эрозионной стойкости. Поэтому для правильного выбора конструкционного материала необходимо проводить испытания на гидроэрозионную стойкость. На практике иногда при одних условиях испытания металлов с одинаковыми химическим составом и структурой, равными усредненными механическими характеристиками показатели эрозионной стойкости образцов оказываются различными. Это объясняется неоднородным строением микрообъемов металла и наличием на отдельных участках большого количества микроскопических дефектов, которые недостаточно выявляются обычными механическими испытаниями, а при микроударном нагружении оказывают отрицательное влияние на сопротивляемость металла разрушению. [c.123]


Смотреть страницы где упоминается термин Конструкционные материалы и оценка их механических свойств: [c.210]   
Смотреть главы в:

Охрана труда в химической промышленности -> Конструкционные материалы и оценка их механических свойств

Охрана труда в нефтеперерабатывающей и нефтехимической промышленности -> Конструкционные материалы и оценка их механических свойств




ПОИСК





Смотрите так же термины и статьи:

Конструкционные материалы

Материя свойства

Оценка свойства



© 2025 chem21.info Реклама на сайте