Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекулы волокон длина и прочность волокона

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]


    Волокнообразующими свойствами обладают полимеры с линейной структурой, т. е. с очень длинными (вытянутыми) макромолекулами, при взаимном упорядочении которых возникают меж-молекулярные связи, препятствующие скольжению их и повышающие сопротивление одноосной деформации волокна, что способствует его более глубокой ориентации. До появления изотактического полипропилена считалось, что текстильные волокна с высокими физико-механическими свойствами можно получить только в том случае, если в линейных макромолекулах имеются группы, которые отличаются способностью к ассоциации. Высокую разрывную прочность найлона объясняли образованием межмолекулярных водородных мостиков. В отсутствие их, например в случае полиэтилентерефталатных и полиакрилонитрильных волокон, межмолекулярные силы возникают между полярными группами соседних макроцепей. [c.229]

    П. можно подвергать холодной вытяжке при этом образуется шейка . В результате вытяжки длина волокна или пленки возрастает на 400— 600%. При холодной вытяжке происходит ориентация макромолекул П. в направлении растяжения, что способствует повышению степени упорядоченности макромолекул и, следовательно, прочности (прочность при растяжении ориентированных волокон или пленок П. 300—400 Мн/м , или 3000—4000 кгс/см , а неориентированных 50—70 Мн/м , или 500 — 700 кгс/см ). [c.369]

    Прочность является одним из наиболее важных механических свойств волокна. Она зависит как от длины молекулярных цепей и степени ориентации, так и от энергии связей между молекулами. Сильные первичные валентные связи и отсутствие слабых вторичных связей обусловливают прочность и хрупкость стеклянных и асбестовых волокон. При больших нагрузках стеклянные волокна обладают незначительным удлинением. Сопротивления вытяжке стеклянного и стального волокна, учитывая плотность, примерно одинаковы и в шесть раз превышают соответствуюш,ее значение для хлопка. Лен и фортизан обладают примерно одинаковым сопротивлением при растяжении, которое в три раза превышает соответствующее значение для хлопка или обычного вискозного шелка, в то время как шелк обладает высоким начальным сопротивлением растяжению. Для льна и фортизана характерны высокая степень ориентации макромолекул и высокая прочность. Тенаско и [c.107]

    Все химические волокна состоят из линейных макромолекул. Последние, как правило, сильно вытянуты в длину, в тысячи и десятки тысяч раз превосходящую их поперечник. Каждая такая макромолекула как бы моделирует волокно, в состав которого она входит. Форма и гибкость макромолекул в большой степени обусловливают важнейшие свойства волокон эластичность, упругость, растяжимость. Прочность волокон сильно зависит от молекулярной массы полимера (степени его полимеризации), характера построения макромолекулы (стереоизомерии). [c.306]


    Согласно концепции Шишкина, и прочность не должна зависеть от степени ориентации. Но известно [3.25], что хрупкая прочность сильно зависит от ориентации, и это понятно чем больше ориентация, тем большая часть рвущихся целей находится в направлении оси волокна. Поэтому в высокопрочном состоянии при переходе от неориентированного к предельно ориентированному состоянию хрупкая прочность должна возрастать в три раза. Далее, очевидно, что у ориентированного полимера с молекулярной массой М—>100 разрушение может происходить только при разрыве цепей. Практически эта ситуация реализуется для промышленных полимеров (М>10 ). Макромолекулы достаточно длинны, чтобы не наблюдалось их скольжение без разрыва цепей. Далее, если прочность полимеров определяется силами межмолекулярного взаимодействия, то расчет теоретической прочности должен производиться по формуле Орована Е, где Е — модуль Юнга (см. гл. 1). Модуль упругости твердых полимеров определяется межмолекулярными взаимодействиями. Для капроновых волокон = 2,5 ГПа и поэтому сгт = 0,25 ГПа, что намного ниже реальных значений ар. Поэтому правильный расчет а должен основываться на гипотезе разрыва химических связей. [c.51]

    В природных волокнах макромолекулы целлюлозы ориентированы вдоль еси волокна. Межмолекулярные силы достигают больших величин, что и определяет прочность волокон. При прядении эти волокна сплетаются в более длинные нити. В целлюлозе дре- [c.299]

    Для увеличения степени ориентации и прочности волокна целесообразно повысить гибкость макромолекул полиэтилентерефталата путем изоморфных замещений. С увеличением молекулярного веса прочность и модуль упругости этих волокон могут увеличиться, по только при одновременном повышении температуры п прилагаемых усилий во время вытягивания, так как более длинные макромолекулы полиэтилентерефталата вследствие малой подвижности труднее ориентируются вдоль оси волокна Особенно явно это проявляется при вытягивании моноволокон. В данном случае полезно вытягивание (или волочение) осуществлять в две стадии. На первой стадии волокно вытягивают при температуре несколько ниже Тс или в условиях тепловой дезориентации — при 90—100° С. Вторая стадия вытягивания осуществляется в условиях максимально достижимой кратности вытяжки (до 2=10). [c.301]

    Эти данные не вполне бесспорны. Результаты, полученные другими исследователями, показывают, что у особо прочных искусственных волокон (с разрывной длиной более 40 км), в которых имеется максимальная ориентация макромолекул, количество водорастворимых продуктов, полученных при одних и тех же условиях гидролиза, меньше, чем у обычного вискозного шелка. Так, например, при гидролизе высокоориентированного искусственного гидратцеллюлозного волокна фортизан , с разрывной длиной 60 км, образуется водорастворимых продуктов примерно в 2 раза меньше, чем при гидролизе вискозного шелка нормальной прочности [c.255]

    Все волокна имеют значительную, в сравнении с поперечником, длину, обладают определенной прочностью и состоят из длинных нитевидных макромолекул. Эта черта, общая для всех волокон, справедливо привлекала большое внимание исследователей. Открытие нашими современниками нитевидной формы макромолекул у различных волокон является одним из наиболее важных оно указало путь для создания синтетических волокон. Если бы физики не установили, что молекулы различных волокон имеют линейную форму и большую длину, мало вероятно, чтобы в настоящее время мы имели такие синтетические волокна, как нейлон, виньон, орлон, терилен и ряд других. [c.88]

    Целлюлоза, из которой состоит готовое вискозное волокно, отличается от исходной древесной целлюлозы в процессе получения волокна происходит деструкция целлюлозы — длинные макромолекулы ее частично гидролизуются, в результате чего образуются более короткие цепи, которые все же обладают достаточной длиной. При получении искусственных волокон путем химической переработки природных полимеров (получение вискозного волокна из древесной целлюлозы, ацетатного волокна из хлопковой целлюлозы, альгинатного волокна из морских водорослей) желательно неизбежный процесс деструкции свести до минимума. Если деструкция природных полимеров проходит в значительной степени, происходит ухудшение их волокнообразующих свойств и снижение прочности получаемых волокон. При настоящем уровне наших знаний полное устранение деструкции невозможно, однако сейчас найдены пути значительного замедления деструкции. [c.118]

    Большинство природных волокон состоит из длинных линейных макромолекул, ориентированных в направлении оси волокна. Благодаря этому волокно приобретает необходимую прочность. Но линейные макромолекулы полимеров (природных и синтетических), перерабатываемые в волокна, не ориентированы и размещены хаотично. Следовательно, волокна из таких полиме- [c.297]

    В процессе получения медно-аммиачного волокна, принципиально отличающемся от процесса получения вискозных волокон, целлюлоза деструктируется меньше. Волокно дурафйл, обладающее высокой прочностью, содержит значительно большее количество высокомолекулярных фракций, чем другие вискозные волокна наименее прочный вискозный шелк характеризуется высоким содержанием низкомолекулярных фракций. Поэтому общим является следующее положение для того, чтобы получить хорошее волокно, следует по возможности избегать деструкции полимера. Часто бывает легко получить волокно с высокой прочностью путем его вытягивания, однако действительная прочность волокна как в продольном, так и в поперечном направлениях и высокая усталостная прочность возможны только при сохранении волокнистой структуры макромолекул. Природные волокна состоят из длинных цепных макромолекул полимеров перерабатывая эти полимеры в искусственные волокна, надо по возможности не допускать деструкции этих длинных молекул. При создании синтетических волокон полимер синтезируют в условиях, способствующих получению его с достаточно высоким молекулярным весом, обеспечивающим хорошие свойства волокна. [c.33]


    Действительно, значительное превышение длины макромолекулы над ее поперечными размерами приводит к тому, что часть полимерной цепи, расположенная ближе к центру канала, движется быстрее, чем остальная часть макромолекулы. В результате происходит ориентация макромолекул в направлении течения, конформационные превращения затрудняются и система вытянутых макромолекул имеет более высокую вязкость, чем исходная. Такое возрастание вязкости при течении полимеров под действием постоянного напряжения и в изотермических условиях может привести к переходу полимера в высокоэластическое или даже стеклообразное (или кристаллическое) состояние. Поскольку при этом существенно возрастает прочность материала, становится возможным вытягивание из расплава волокон или пленок при температуре расплава. В процессе вытяжки течению подвергается только материал в массе у основания волокна или пленки. Явление изотермической вытяжки наиболее легко проявляется в высокомолекулярных соединениях со сравнительно жесткими макромолекулами при температурах, незначительно превышающих Гт- [c.63]

    Суперполиамиды дают рентгенограмму волокна, сходную с рентгенограммой целлюлозы или шелка. Прочность отдельных волокон из суперполиамидов исключительная. Нити полистирола, несмотря на значительно большую длину макромолекул, обладают в несколько раз меньшей механической прочностью. Это дает основание предполагать, что прочность на разрыв у суперполиамидов значительно увеличена за счет полярной структуры макромолекул, получающихся при поликонденсацин, и связанной с этим возможностью образования кристаллических зон. [c.240]

    Любые механические (трещины, пустоты, повреждения поверхности, разрывы волокон) и структурые дефекты (различная ориентация макромолекул по длине волокна, различное соотношение аморфных и кристаллических участков) также снижают прочность химических волокон. Это является в настоящее время, вероятно, основной причиной снижения прочности волокон. [c.298]

    Другим примером кристаллического полимера является политетрафторэтилен, имеющий также большое значение как диэлектрик. Способность цепей политетрафторэтилена кристаллизоваться объясняется малым размером атома фтора, благодаря чему цепи могут близко располагаться относительно друг друга. Среди кристаллических полимеров можно выделить группу веществ, характеризуемых сильным межмолекулярным притяжением, благодаря симметричности их строения и действию особых связей, называемых в о дородными (стр. 43). Энергия межмолекулярного притяжения у таких полимеров, отнесенная к единице длины цепи (5 Л), более 5 ккал, тогда как у таких аморфных полимеров, как полихлорвинил, полистирол, полиметилметакрилат, она находится в пределах 2—5 ккал. К первым относятся полиамиды, полиэтиленгликольтерефта-лат, полиуретан и др. Эти полимеры отличаются высокой температурой плавления (у полиамида капрон — 214—218° С, у полиэтилен-гликольтерефталата — 260—264° С). Благодаря способности цепей макромолекул располагаться параллельно и прочной связи между ними, полимеры такого строения обладают большой прочностью вдоль расположения цепей (или вдоль волокна), что особенно важно для синтетических волокон и пленок. Повышение прочности достигается дополнительной ориентацией макромолекул при применении холодной вытяжки. [c.15]

    Прочность синтетических волокон в отличие от природных значительно (в несколько раз) повышается при холодной вытяжке этих волокон после образования их прядением из расплава. Холодная вытяжка способствует дополнительной ориентации макромолекул в направлении вытяжки и увеличению степени кристалличности полимера. При этом длина волокна увеличивается на 400—600%. Ориентированное волокно или пленка имеют прочность на разрыв 3000—4000 кг1см , а неориентированное 500— 700 кг/см [10]. [c.670]

    Высокая прочность. Чем выше степень ориентации макромолекул в волокне, тем выше обычно его прочность. Естественным результатом процесса вытягивания волокна является значительное повышение его номера при этом абсолютная прочность нити (в г) почти не изменяется, но разрывная длина волокна возрастает. Разрывная длина нейлона равна примерно 54 км, фортизана — около 63 км, виньона — 36 км. Все эти величины значительно выше, чем у слабоориентированных волокон. [c.83]

    Получение искусственных и синтетических волокон. Геометри-ческая форма волокон характеризуется чрезвычайной протяженностью в одном из направлений, при сравнительно весьма малых размерах по двум другим направлениям. Высокая прочность и большая гибкость волокон в значительной мере обусловливаются их молекулярной структурой. Огромное большинство природных и искусственных волокон состоит из длинных линейных макромолекул, располагающихся в большей или меньшей степени вдоль волокна, т. е. ориентированных в направлении его оси. [c.421]

    Рассчитывая и для разных значений разрывных напряжений, удалось установить линейную зависимость IУ=/( Tp), что псзво-лило графически определить свободный член 1/ и угловой коэффициент у. Естественно, что определение этим способом значений Оо н у возможно только при неизменности структуры материала, т. е. неизменности значения 7. Для ряда волокон были определены значения (/ . Величина характеризует энергию связей, которые надо преодолеть при разрушении материала. Для высокоориентированных волокон величины колебались в пределах от 35 до 56 ккал моль, что соответствует энергии химической связи. Это дало основание С. Н. Журкову утверждать, что разрыв происходит по химическим связям [17, 19, 22]. При введении пластификаторов в волокносбразующие полимеры прочность волокна уменьшалась в 1,5 раза, а значение Uf не изменялось. Это тоже свидетельствовало в пользу представлений, основывающихся на разрыве химических, а не межмолекулярных связей. Однако все эти доказательства относятся к предельно ориентированным полимерам, в которых силы межмолекулярного взаимодействия, суммируясь по длине макромолекул, превосходят прочность хи.мической связи между звеньял и одной цепи. В этих условиях рвется наиболее слабая химическая связь, которая и определяет, в основном, прочность полимера. Если же полимер не находится в предельно ориентированном состоянии, то разрушение происходит по границе раздела надмолекулярных образований. Суммарное противодействие разрыву сил межмолекулярного взаимодействия сравнимо с противодействием сил химических. [c.238]

    После того, как испарилась капиллярно удерживаемая вода, прочность, казалось бы, должна резко упасть. Но при этом на смену капиллярным силам приходят силы межмолекулярного взаимодействия в целлюлозе. Высокая асимметрия волокон и их гибкость обеспечивают образование большого числа контактов каждого волокна с соседними волокнами. Согласно данным Пейжа, Тейдемана и Ханта [9], а 1 мм длины волокна приходится 30. и более контактов. Тесный контакт двух поверхностей сильно набухшей целлюлозы, цаходящейся в пластическом состоянии, приводит к взаимодействию между сегментами макромолекул целлюлозы и между гидроксильными группами звеньев в соседних цепях. Ослиз-невшая , сильно деструктированная при размоле целлюлоза содержит также и некоторое количество таких фракций низкой степени полимеризации, которые нерастворимы при обычной температуре, но становятся растворимыми при температуре сушки (в области 100°С). Таким образом, в местах контактов таких волокон может происходить образование очень пластичного слоя. Не исключено, что здесь частично наблюдается и своеобразное взаимное смешение сегментов целлюлозных молекул, которое согласно Воюцкому [10, 11] следует обозначать как аутогезию. [c.186]

    В волокнах, главным образом в тех, которые подвергаются механическому растяжению, макромолекулы ориентируются своим наиболее длинным размером параллельно оси волокна. Между параллельными макромолекулами этих волокон устанавливаются слабые, но многочисленные связи за счет вандерваальсовых сил, что сильно увеличивает механическую прочность волокна. [c.284]


Смотреть страницы где упоминается термин Макромолекулы волокон длина и прочность волокона: [c.459]    [c.156]    [c.156]    [c.240]   
Химические волокна (1961) -- [ c.52 , c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Длина макромолекул и прочность волокна

Макромолекулы волокон

Макромолекулы волокон длина



© 2025 chem21.info Реклама на сайте