Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлические и другие конструкционные материалы

    Цирконий почти не подвержен действию кислот и растворяется легко только в царской водке и в плавиковой кислоте. Большой интерес к металлическому цирконию, проявляемый за последнее время, обусловил проведение различных исследований коррозионной устойчивости циркония в различных средах. Эти исследования подтверждают, что цирконий медленно растворяется в серной и концентрированной соляной кислоте, но выдерживает 5%-ную соляную кислоту (холодную и горячую), растворы органических кислот, растворы некоторых оолей и раствор йода в йодистом калии [316]. Применение циркония как конструкционного материала в ядерной технике заставило особенно подробно изучить его коррозионную устойчивость не только в кислотах и других водных растворах, но и в воде, водяном паре, некоторых газах и в ряде органических реагентов. По данным, приводимым (в монографии [457], цирконий обладает отличной стойкостью (скорость коррозии меньше 0,0127 мм в год) почти во всех исследованных средах, за исключением газообразного хлора, с которым он легко взаимодействует, и хлорпроизводных уксусной кислоты. Исследована также коррозия циркония в расплавах различных металлов, но определенных данных пока пе получено [457]. [c.174]


    Для борьбы с коррозией теплообменников внутреннюю или наружную поверхность металлических труб и внутреннюю поверхность кожухов облицовывают стеклом применяют плакировку, сочетающую механическую прочность одного металла с коррозионной стойкостью другого. Так, тонкий слой нержавеющей сталп прокаткой соединяют с листом обычной углеродистой стали. Применяют иногда электролитические или химические покрытия, образующие противокоррозионную пленку на конструкционных материалах. При случае несовместимости прокачиваемой жидкости с материа.1 ами труб используют биметаллические трубы, например из никелевого сплава с одной стороны и алюминиевого — с другой. [c.270]

    Механизм действия неметаллических защитных покрытий состоит, главным образом, в отделении поверхности металла или какого-то другого конструкционного материала от коррозионной среды. Лишь некоторые виды лакокрасочных покрытий (содержащие цинковую или алюминиевую пыль, пассивирующие вещества, например окислы свинца, хромат цинка) предохраняют металлические поверхности от коррозии благодаря протекторному или пассивирующему действию. [c.55]

    Производство стали — другая огромная область химической промышленности. Сталь, состоящая в основном из металлического железа, представляет собой важный конструкционный материал. Сталь получают из железной руды путем сложных химических процессов. В США ежегодно производят приблизительно 800 кг стали на душу населения. [c.11]

    Преимущество стекла в качестве конструкционного материала обусловлено его прозрачностью к излучению, легкостью оперирования им, диэлектрической прочностью, относительной химической инертностью и простотой обнаружения течи. С другой стороны, металлические системы менее хрупки и благодаря переходам легко демонтируются. Для лабораторных систем объемом в пять литров и меньше стекло обычно предпочтительнее, и в дальнейшем изложении будут рассматриваться только такие системы. [c.255]

    Кластеры алюминия представляют интерес как модели, в которых присутствует свободный электронный газ в форме, что обеспечивает алюминию хорошую металлическую проводимость. С другой стороны, алюминий интересен для исследования из-за его большой значимости в качестве конструкционного материала или материала для различных химических применений. [c.259]

    Низкие предел прочности и модуль упругости, а также недостаточно высокая коррозионная стойкость не позволяют применять металлический торий как конструкционный материал. Однако металлический торий используется как электродный материал для газоразрядных и других типов ламп [392]. [c.651]


    Иопользование новых конструкционных материалов, таких, как алюминиевые аплавы, титан и его сплавы, взамен традиционных углеродистых сталей в значительной степени могло бы способствовать повышению технико-экономических показателей оборудования. Применение этих и других материалов в виде металлических покрытий углеродистой стали позволяет расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал необходимо выбирать с учетом характера коррозионного разрушения оборудования в процессе его эксплуатации. [c.3]

    Арматура хорошо изучена и может быть рассчитана на различные виды нагрузок и деформаций. Другая составная часть резино-металлических деталей — резина, как конструкционный материал изучена еще недостаточно, несмотря на ряд работ в Советском Союзе и за рубежом - 2. [c.298]

    Значительная, по сравнению с другими термопластами, механическая прочность дает возможность исиользовать винипласт в качестве конструкционного материала. Конструкции из винипласта, как правило, легче металлических, а служат не меньше, а иногда и дольше последних. [c.23]

    Серебро. Серебро нашло техническое применение в химическом машиностроении в качестве самостоятельного конструкционного материала в производствах главным образом таких органических сред, которые либо обладают столь высокой агрессивностью, что другие металлические материалы непригодны (например, монохлоруксусная кислота, уксусный ангидрид, медицинские препараты и др.), либо к ним предъявляются требования очень высокой чистоты, сохранности, стабильности [c.274]

    Ниже приводятся данные по стойкости ряда конструкционных металлических и неметаллических материалов, наиболее важных для создания циркуляционных контуров и других систем, непосредственно соприкасающихся с теплоносителем при повышенных температурах. При изложении этого материала мы использовали работу [21, дополнив ее результатами работ последних лет. [c.273]

    Это процесс постепенного накопления повреждений материала под воздействием переменных напряжений и коррозионно-активных сред, приводящий к изменению свойств, образованию коррозионно-усталостных трещин, их развитию и разрушению изделия. Этому виду разрушения в определенных условиях могут быть подвержены все конструкционные материалы на основе железа, алюминия, титана, меди и других металлов. Опасность коррозионно-усталостного разрушения заключается в том, что оно протекает практически в любых коррозионных средах, включая такие относительно слабые среды, как влажный воздух и газы, спирты, влажные машинные масла, не говоря уже о водных растворах солей и кислот, в которых происходит резкое, иногда катастрофическое снижение предела выносливости металлов. Поэтому коррозионная усталость металлов и сплавов наблюдается во всех отраслях техники, но наиболее она распространена в химической, энергетической, нефтегазодобывающей, горнорудной промышленности, в транспортной технике. Коррозионно-усталостному разрушению подвергаются стальные канаты, элементы бурильной колонны, лопатки компрессоров и турбин, трубопроводы, гребные винты и валы, корпуса кораблей, обшивки самолетов, детали насосов, рессоры, пружины, крепежные элементы, металлические инженерные сооружения и пр. Потеря гребного винта современным крупнотоннажным судном в открытом океане приносит убытки, исчисляемые миллионами рублей. [c.11]

    Преобразователи для контроля анизотропии механических и электрофизических свойств металлов. Одной из важнейших характеристик современных металлов и сплавов, во многом определяющей их механические и физические свойства, является степень совершенства кристаллографической текстуры, под которой понимается преимущественная пространственная ориентация зерен в полюфисталле. Текстура, обусловливая анизотропию свойств, обеспечивает избирательно в различных направлениях повышение пластичности, прочности, модуля упругости, магнитных свойств, стойкости металлических покрытий против коррозии и т. д. Создание в материалах совершенной кристаллографической текстуры является в ряде случаев одним из путей повышения их эксплуатационных характеристик. Для этого исследователям и специалистам-пракгикам необходимы методы и средства для получения сведений о типе и степени совершенства кристаллографической текстуры. Другой не менее важный аспект необходимости измерения анизотропии физических свойств металлов, обусловивший рождение на свет разнообразных конструкций датчржов, вызван необходимостью определения механических остаточных напряжений в деталях машин и механизмов, элементах строительных конструкций и т. д., выполненных из различных марок конструкционных сталей. Для этих целей используется явление магнитоупругого эффекта, под которым в общем случае принято понимать изменение магнитных свойств материала под воздействием механических напряжений. Измерив изменение величины или характера анизотропии магнитных свойств, можно, используя градуировочные кривые зависимости магнитных свойств исследуемого материала от величины механических напряжений, судить об их наличии в металле, а иногда и оценить их величину [50]. [c.134]


    Низкий коэффициент трения и высокая износоустойчивость полипропилена позволяют использовать этот перспективный материал для конструкционных и других целей в машиностроительной промышленности, в том числе и там, где химическая стойкость имеет второстепенное значение. Из полипропилена изготовляют, в частности, детали текстильного оборудования (бобины, сепараторы, веретена), вентиляторов, пылесосов, полотеров, холодильников, колпаки и винты машин для стрижки газонов и т. д. [8]. Применение его для этих целей вполне обоснованно вентиляторы с полипропиленовыми деталями создают меньше шума и более стойки к вибрации, чем металлические, к тому же они более безопасны [c.299]

    Эластомерные полиуретановые покрытия обладают износостойкостью, недостижимой для покрытий на основе других каучуков. Это ценное качество заметно уже при контактном трении о твердый истирающий материал, например при определении истираемости по ГОСТ 426—66. Особенно же отчетливо это преимущество проявляется при эрозионном износе, когда песок, пыль или другое твердое вещество находится во взвешенном состоянии в газовом или жидкостном потоке. В таких условиях подвижная среда, окружающая частички абразива, снимает тепло, образующееся в эластомере при трении и соударении с этими частицами. Благодаря этому существенно облегчаются условия работы эластомерного покрытия и снижается опасность термоокислительной деструкции эластомера. Важно отметить, что упруго-эластичные свойства полиуретановых покрытий, от которых зависит износостойкость, не могут проявиться при слишком малой толщине покрытия на жестком конструкционном материале. Поэтому для эрозионной защиты изделий применяют эластомерные полиуретановые покрытия толщиной не менее 0,5 мм. На металлической подложке, способствующей отводу тепла, толщина монолитных полиуретановых покрытий, эксплуатирующихся в условиях интенсивного эрозионного воздействия, обычно лежит в пределах 1,5—2 мм. [c.151]

    В качестве конструкционного материала не заменим фафит в силу его высокой стойкого к температурам, развиваемым в процессах СВС (до 4500°С). Из пористого и достаточно прочного фафита изготавливают фyтq)Oвкy для реактора, формообразующие вставки для СВС-прессования изделий заданной формы и другую оснастку. Для футеровки используют фафит марки типа МПГ-6 с пористостью не менее 20 %. Назначение футеровки не сводится только к теплоизоляш1и металлического корпуса реактора, она также создает углеродную атмосферу при синтезе и способствует отводу через поры образуемых при горении газов. Вместе с газами из зоны горения удаляются и ненужные примеси, на этом основан прием самоочистки при СВС. [c.58]

    Применение алюминия и его соединений. Благодаря большой распространенности и доступности алюминия, падежным способам его получения, а также получения соединений и сплавов с участием А1, он нашел широчайшее применение в современной технике и промышленности. Этому также способствуют малая плотность алюминия (2,7 г/см ), высокая электрическая проводимость, достаточная механическая прочность и низкая себестоимость. Металлический алюминий применяется для алюмотермии, изготовления проводов и посуды. Благодаря низкому сечению захвата тепловых нейтронов и малой чувствительности к радиации алюминий применяется как конструкционный материал для ядернвлх реакторов, в основном с водяным охлаждением. Сплавы на основе алюминия занимают второе место после стали и чугуна. Они применяются в ракетной технике, в авиа-, авто-, судо- и вагоностроении, приборостроении, в химическом аппаратостроении, в строительстве н т. д. Достоинство всех алюминиевых сплавов — малая плотность, высокая удельная прочность, удовлетворительная стойкость против коррозии, недефицит-ность, простота технологии и обработки по сравнению с другими цветными сплавами. [c.155]

    Выплавленный в доменной печи чугун содержит 2-5 % углерода, небольшие количества кремния, серы, фосфора, марганца и, иногда в качестве легирующих добавок, другие металлы. Это самый дешевый металлический конструкционный материал. Его механические свойства сильно зависят от состояния содержащегося в нем углерода. Если жидкий металл охлаждают быстро, то углерод в основном находится в виде карбида железа Feg (цементит), и чугун очень хрупок (белый чугун). Серый чугун, получаемый медленным охлаждением, содержит пластинчатый графит, который придает ему хорошие антифрикционные свойства, но при этом ослабляет кристаллическую решетку железа. Ковкий чугун, содержащий меньше 0,3 % углерода, образуется в результате термической обработки серого чугуна, приводящей к тому, что пластины графита превращаются в более компактные шарики, которые уже меньше ослабляют решетку железа. [c.356]

    Аппарат для синтеза алмаза, предложенный Холлом, назывался белт (пояс), потому что центральная часть, где происходит синтез алмазов, поддерживалась кольцом из карбида вольфрама с бандажом из высокопрочной стали [19]. Два конических поршня приводились в движение с помощью большого гидравлического пресса из упрочненной стали. Главная трудность при создании аппаратов высоких давлений и температур заключается в том, что стали и другие конструкционные материалы быстро теряют свою прочность при нагреве. Эту проблему можно решить путем нагрева только внутреннего рабочего объема и соответствующей термоизоляции для предотвращения чрезмерного нагрева поршней и пояса. Группа Дженерал электрик с успехом использовала встречающийся в природе минерал пирофиллит, материал мягкий, достаточно хорошо передающий давление и в то же время обладающий высокой температурой плавления. В полость, образованную поршнями и поясом, помещали ячейку из пирофиллита с вмонтированной электропечью в виде графитовой трубки, с помощью которой достигалась необходимая температура. Зазоры между поршнями и поясом уплотнялись металлическими и пирофиллитовыми прокладками, которые вьшолняли также роль тепло- и электроизоляторов. [c.73]

    Интенсивные исследования в этой области несомненно связаны с многочисленными случаями коррозионного растрескивания промышленных металлических конструкций. Например, выход из строя оборудования вследствие коррозионного растрескивания, для коррозионно-стойких сталей типа 18Сг10К1Т1, широко используемых в качестве конструкционного материала в химической и других отраслях промышленности, составляют по американским данным 23,7 и по японским 38 % [123]. [c.110]

    Монокарбид ниобия Nb — пластичное вещество с характерным розоватым блеском. Это важное соединение довольно легко образуется при взаимодействии металлического ниобия с углеводородами. Сочетание хорошей ковкости и высокой термостойкости с приятными внешними данными сделало монокарбид ниобия ценным материалом для изготовления покрытий. Слой этого вещества толщиной всего 0,5 мм надежно защищает от коррозии при высоких температурах многие материалы, в частности графит, который другими покрытиями фактически незащитим. КЬС используется и как конструкционный материал — в ракетостроении и производстве турбин. [c.214]

    Фаолит, как конструкционный материал, применяется во многих отраслях промышлениостн. В ряде случаев он является заменителем цветных металлов, особенно свинца. Легкость фаолита (плотность 1,5—1,67 г/сж ), стойкость к кислым агрессивным средам и формуемость позволяют изготовлять из него химически стойкую аппаратуру, масса которой в несколько раз меньше металлической. Фаолит можно применять при более высокой температуре, чем многие другие кислотостойкие пластические массы. По техническим условиям гарантируется теплостойкость фаолита до 100 "С. Практически же в производственных условиях фаолит выдерживает температуры 130 °С и выше. [c.265]

    В химическом машиностроении нашли широкое применение специальные марки резины и эбонитов, служащих для обкладки металлических аппаратов, цистерн, различных емкостей, трубопроводов и др. с целью защиты их от коррознн. Эбонит (твердая резина), кроме того, применяется в качестве самостоятельного конструкционного материала, правда, ограниченно, для изготовления небольщих аппаратов, насосов, кранов и других деталей. [c.470]

    Соединшие царг - преимуществшно раструбное, но можег быть и фланцевое на болтах или зажимах. Конструкционный материал - дунито-вая керамика, твердый фарфор или другие керамические материалы, Цдрги колонн, предназначенных для эксплуатации при повышенном давлении (более 0,05 МПа). можно снабжать металлическими защитными кожухами. [c.154]

    Роль пластмассовых покрытий в современной технике трудно переоценить. Превосходная химическая стойкость, водостойкость, погодоустойчивость, стойкость к изменению температуры и другие свойства полимерных материалов позволяют использовать их для защиты от коррозии и агрессивного воздействия химических сред самого разнообразного химического оборудования, трубопроводов, строительных конструкций. Пластмассовые покрытия позволяют повысить срок службы обычных конструкционных материалов, а это означает, что в ряде случаев нет необходимости применять дорогостоящие нержавеющие стали и сплавы. Хорошие декоративные свойства пластмасс в сочетании с такими свойствами, как устойчивость к воздействию микроорганизмов, низкая газопроницаемость, отсутствие токсичности и т. д. дают возможность использовать пластмассы для создания различных слоистых материалов, успешно применяемых для декоративного оформления и упаковки. Покрытия на различные изделия и рулонные материалы могут быть нанесены разными способами в зависимости от физических свойств полимерного материала, а также от вида покрываемого изделия. Для создания покрытий полимерные материалы могут использоваться в виде расплавов, растворов, порошков, пленок. Одним из наиболее интересных является метод нанесения порошкообразного полимера в псевдоожижениом слое. Покрытия на основе высокомолекулярных эпоксидных смол на металлических деталях самого сложного профиля могут быть получены окунанием предварительно нагретой детали в ванну, в которой находится псевдоожиженная порошкообразная смола и отвердитель. Для нанесения покрытий на наружные и внутренние поверхности крупногабаритных конструкций разработаны различные конструкции многокомпонентных распылителей, с помощью которых можно наносить на поверхность как жидкие композиции, так порошковые и волокнистые наполнители. Несколько лет назад появились сообщения о вакуумном методе нанесения пленочных покрытий. Покрытия в этом случае образуются путем приклеивания под вакуумом полимерной пленки к поверхности изделия [235]. [c.195]

    Коррозия металлических сооружений причиняет огромный ущерб всем отраслям (народного хозяйства. Особенно велики потери в результате коррозии нефте-и газопромыслового оборудова ия, что связано с наличием высокоагрессивных комшонентов в рабочих средах и другими особенностями работы оборудования. Долговечность и (надежность работы его во многом зависят от технико-экономической характеристики конструкцион ного материала для нефтегазодобывающего оборудования, к которому предъявляют чрезвычайно высо кие требования он должен обладать сочетанием прочностных и пластических свойств, сохраняющихся в широком интервале температур, высокой коррозионной стойкостью, стойкостью против водородного охрупчивания, коррози-о нного растрескивания и др. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, что усложняет транспортирование оборудования, увеличение глубин скважин и большие габариты оборудоваиия требуют подъемных механизмов большой мощности, поэтому желательно использование конструкционных материалов, позволяющих снизить массу конструкций. Конструкционные материалы должны быть технологичны и едефицитны. [c.3]

    Металлический цирконий и сплавы на его основе применяют как конструкционные материалы в энергетических ядерных реакторах, а также как жаропрочный и кислотостойкий материал в химическом машиностроении. Цирконий используют в производстве электрова куумных приборов, а также в пиротехнике. Присадки его применяют в производстве сталей, а также сплавов на основе цветных металлов. Эти сплавы отличаются большой прочностью, а потому применяются в оборонной технике (броневая и орудийная стали), турбостроении и других отраслях техники. [c.89]

    Чистый титан имеет две модификации. До температуры 882,5°С он существует в виде а-титана с гексагональной решеткой, а выше температуры полиморфного превращенип — в виде 0-титана с объемно-центрированной кубической решеткой. Как конструкционньгй материал титан в чистом виде, ввиду низкой прочности, почти не применяется. Титан обычно легируют различными а-стабилиэирующими (А1, Ga, La, Се. N, С, О) и -стабилизирующими (Н, Nb, V, Мо, Сг, Fe, Со, Ni, Hf, Zr и др.) элементами, существенно изменяющими его структуру и свойства [ 135]. Высокая коррозионная стойкость титановых сплавов обеспечивается благодаря образованию на поверхности плотных химически мало активных оксидных пленок. Титановые сплавы стойки к сплошной и точечной коррозии в сероводородсодержащих средах, морской воде, углекислом и сернокислом газах и других средах. С помощью подбора легирующих элементов и режимов термической обработки сплавов удается достичь = 1500 МПа и более, что обеспечивает титановым сплавам наивысшую удельную прочность среди конструкционных металлических материалов. [c.70]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]

    На скорость взаимодействия литня с водородом влияют чистота металлического лнтия, водорода, давление водорода, дисперсность применяемого металла, его агрегатное состояние, материалы, используемые для коиструнровання аппаратуры, и другие факторы. Чаще всего для реакции водорода с литием исходным сырьем является расплавленный литий (температура плавления 186° С). Поскольку. металлический литий легко реагирует с большинством конструкционных материалов, необходимо тщательно подходить к подбору материала аппаратуры. На практике в качестве материала реактора используют нержавеющую сталь и армко-железо. [c.35]

    В подавляющем большинстве металлические конструкционные материалы являются многокомпонентными сплавами, в состав которых входят легирующие (вводимые специально для придания материалу необходимых свойств) и примесные (попадающие в материал с рудными материалами в процессе выплавки и металлурги-чес1сих переделов) элементы. Вступая друг с другом во взаимодействие компоненты сплавов могут образовывать фазы — однородные по структуре (кристаллическому строению) и составу (концентрации компонентов) области, ограниченные поверхностями раздела. Конструкционные материалы, как правило, содержат несколько фаз, относительное количество которых может существенно различаться. [c.29]

    Накипь представляет собой отложения на греющей поверхности нерастворимых срлей или солей, растворимость которых уменьшается с увеличением температуры. Образование накипи можно уменьшить (или вовсе его избежать) теми же методами, что и образование наростов кристаллов. Для выпаривания жидкостей, легко кристаллизующихся или дающих накипь, следует пользоваться аппаратами, у которых интенсивность циркуляции не зависит от режима кипения. Загрязнения представляют собой осадки (не являющиеся ни солью, ни накипью), образующиеся либо в результате коррозии, либо из твердых веществ, внесенных с питающим раствором, а также отложения, имеющие место при конденсации пара. Продукты, подвергающиеся термическому разложению, выпаривают при сравнительно низкой температуре кипения и коротком времени пребывания в аппарате. Для подобных процессов некоторые типы выпарных аппаратов неприменимы (в отдельных случаях из-за низкого коэффициента теплопередачи при низких температурах). Иногда аппарат конструируется из специальных материалов, чтобы избежать металлических загрязнений продукта или каталитического действия материала аппарата на продукт. Следует принимать в расчет также коррозию, поскольку она значительно - понижает общий коэффициент теплопередачи и требует применения дорогостоящих конструкционных материалов. Коррозия (или эрозия) обычно гораздо сильнее проявляется в выпарных аппаратах, чем в других типах оборудования, из-за высоких скоростей жидкости и пара, а также из-за частого присутствия в жидкости взвешенных твердых/ веществ и изменения концентраций выпариваемого раствора. [c.281]

    Для эффективной защиты упаковки от коррозии широко применяются металло пласты — листовые конструкционные материалы, состоящие из металлической полосы (листа) и полимерного покрытия на основе поливинилхлорида, полиэтилена и других термопластов. Толщина полосы обычно составляет 0,3—1,2 мм, полимерного покрытия — 0,05—1,0 мм. Для получения такого материала на металл наклеивается полимерная пленка, наносится пастообразная отверждающаяся композиция или напыляется порошок (ТУ 14—1—1114—78). Из металлопласта обычными способами изготовляется упаковка с высокими антикоррозионными свойствами. [c.155]


Смотреть страницы где упоминается термин Металлические и другие конструкционные материалы: [c.129]    [c.129]    [c.129]    [c.22]    [c.546]    [c.125]    [c.100]    [c.140]    [c.140]    [c.140]    [c.316]   
Смотреть главы в:

Справочник химика-энергетика Том 1 Изд.2 -> Металлические и другие конструкционные материалы




ПОИСК





Смотрите так же термины и статьи:

Конструкционные материалы

Конструкционные материалы металлические



© 2024 chem21.info Реклама на сайте