Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие ближние, средние, дальние

    Основу структурной организации живого составляют макромолекулы, прежде всего важнейшие биополимеры — белки и нуклеиновые кислоты. Специфика полимерных молекул в отличие от малых молекул определяется большим числом однотипных звеньев (мономеры), связанных в линейную цепь. Тепловое движение входяш их в полимерную цепь атомов и атомных групп, повороты и враш ение их вокруг единичных связей обусловливают большое число внутренних степеней свободы макромолекулы. Это заставляет рассматривать макромолекулы как макроскопическую систему, статистический характер поведения которой проявляется в наличии средних значений таких параметров, как размеры, форма, степень, свернутости макромолекулы. Вместе с тем суш ествуюш ие между атомами химические связи и взаимодействии ближнего и дальнего порядка накладывают определенные ограничения на число возможных конформаций макромолекул. Изменение конформации биополимеров, происходяш ие в процессах клеточного метаболизма и трансформации энергии, также носят вполне определенный характер и отражают внутримолекулярную динамическую организацию биополимеров. Таким образом, своеобразие биологической макромолекулы как физического объекта заключается в тесном сочетании статистических и детерминистских (механических) особенностей ее поведения с одной стороны, большое число взаимодействуюш их атомов и внутримолекулярных степеней свободы и, как следствие, возможность осуш ествления огромного числа разных конформаций, с другой — определенный химический характер и конформационные изменения при функционировании биополимеров. [c.168]


    Проведенный анализ пространственных форм основных цепей амино. кислотных остатков в белках показал, что их конформационные состояния почти полностью определяются ближними взаимодействиями, т.е, взаимодействиями валентно-несвязанных атомов в пределах одного остатка Влияние даже ближайших остатков ни в одном случае не ведет к повышению энергии, а проявляется лишь в характере распределения конформационных точек в пределах низкоэнергетических областей конформационных карт изолированных молекул метиламидов N-ацетил-а-аминокислот. Несмотря на наличие средних и дальних взаимодействий, которые обусловливают образование глобулы, в белках не реализуются состояния остатков с повышенной энергией ближних взаимодействий. О высокой степени соответствия конформационных состояний самым низкоэнергетическим оптимальным конформациям свободных монопептидов свидетельствует, например, отсутствие в белках остатков в формах М и Н, которые проигрывают в условиях водного окружения глобальным оптимальным конформациям не более 3,0 ккал/моль. Распределение конформационных точек (р, 1 остатков в белках на картах метиламидов N-ацетил-а-аминокислот находится в хорошем соответствии со свободной энергией состояний изолированных монопептидов. [c.186]

    В случаях, когда нет взаимодействий ближнего и дальнего порядка, получается цепь со свободным вращением всех звеньев. Статистическая теория позволяет связать средние размеры такой полимерной цепи с ее структурными свойствами (валентными углами и длинами связей). Например, для цепи, состоящей из связей одного типа и со свободным вращением вокруг связей, ее размеры равны [c.403]

    В то же время ближние, средние и дальние взаимодейств определяют [c.281]

    В заключение раздела остановимся на двух вопросах, которые при обсуждении поэтапного метода конформационного анализа пептидов и белков, казалось бы, должны иметь первостепенное значение. Речь идет о принципах разбиения пептидной цепи на фрагменты и критерии отнесения конформационных состояний каждого рассчитываемого фрагмента к низкоэнергетическим, т.е. перспективным в последующем расчете более сложного участка пептидной цепи, и к высокоэнергетическим - неперспективным, исключаемым из расчета. Что касается первого вопроса, то постулируемая в теории структурной организации пептидов и белков согласованность ближних, средних и дальних взаимодействий не делает его принципиальным. Конечный результат в этом случае должен быть одним и тем же при любой схеме разбиения последовательности на фрагменты. Тем не менее разделение пептида на отдельные участки -ответственный момент конформационного анализа, поскольку от выбранной схемы существенным образом зависит объем вычислительных работ. Более того, заметный прогресс в расчете трехмерных структур высокомолекулярных белков можно ожидать при разработке метода априорной идентификации конформационно жестких и лабильных фрагментов аминокислотной последовательности. Обсуждение этого вопроса будет продолжено в конце книги после рассмотрения результатов расчета пептидов и белков. [c.232]


    Выявлены функции ближних, средних и дальних взаимодействий, определяющих возможность, направленность и предел самопроизвольного процесса свертывания белковой цепи в нативную конформацию. Этот вопрос рассматривается (с привлечением экспериментальных данных и неравновесной термодинамической модели) в следующей главе после анализа результатов априорного расчета пространственной структуры молекулы бычьего панкреатического трипсинового ингибитора. [c.426]

    Таким образом, остатки Asp , Phe , ys и Leu в кристаллической структуре фрагмента обладают ограниченной конформационной свободой и находятся в наиболее низкоэнергетических состояниях Поскольку в каждом случае имеется только одна область низкой энергии, конформационное состояние каждого остатка пептидной цепи фрагмента Arg - ys взаимообусловлено. Кооперативность столь велика, что делает невозможным изменение конформации основной цепи одного остатка без одновременного изменения конформаций других остатков, т.е. без разрушения всей системы средних взаимодействий, в данном конформационном состоянии. В силу этого обстоятельства, а тем более при наличии согласованности ближних, средних и дальних взаимодействий маловероятно не только изменение структуры основной цепи данного участка, но и большие отклонения углов ф, у в рамках той же структуры при генерации аминокислотной последовательности и ее укладке в нативную структуру [c.440]

    Решающую роль в создании количественного метода сыграли положения о гармонии всех внутриостаточных и межостаточных взаимодействий и их преобладающем энергетическом влиянии над взаимодействиями белковой цепи с молекулами и ионами окружающей среды. Одно из этих положений позволило разделить проблему структурной организации белка на три менее громоздкие и поддающиеся последовательному решению частные проблемы ближних, средних и дальних взаимодействий. В результате специально разработанной классификации пептидных структур на конформации, формы и шейпы стало возможным получение достоверных количественных данных о конфор-мационных состояниях целых наборов структурных вариантов различных таксономических групп, ограничившись детальным анализом их отдельных представителей. Классификация настолько сократила объем вычислительных работ, что сделала реальным расчет трехмерных структур бе лков, на первых порах низкомолекулярных. Изложенные в книге результаты априорных расчетов структур трипсинового ингибитора, сложного фрагмента нейротоксина II и большого числа олигопептидов, состоящих из десятков аминокислотных остатков, свидетельствуют об адекватном отражении предложенными теориями (бифуркационной и физической) структурной самоорганизации белков и пептидов и реальности предсказания их нативных конформаций. [c.8]

    Предположение о согласованности в нативной конформации белка всех внутримолекулярных взаимодействий открывает принципиальную возможность для поэтапного, фрагментарного подхода к решению проблемы структурной организации белковой макромолекулы. Это можно осуществить путем последовательного анализа трех видов взаимодействий, определяющих конформационное состояние каждого аминокислотного остатка в трехмерной структуре. К ним следует отнести, во-первых, взаимодействия атомов одного остатка между собой и с атомами двух смежных пептидных групп (ближние взаимодействия), во-вторых, взаимодействия остатка с соседними в последовательности остатками (средние взаимодействия) и, в-третьих, взаимодействия остатка с удаленными по цепи остатками (дальние взаимодействия) (рис. 1.1). Предложенное разделение взаимодействий до некоторой степени условно. Однакр среди возможных других оно представляется наиболее естественным и, как можно будет убедиться впоследствии, удобным с методологической точки зрения. Выделение трех видов невалентных взаимодействий (а не двух или четырех) не является полностью формальным, так как они довольно четко различаются по своим функциям в организации пространственной структуры молекулы белка. Но главное все же состоит не в способе разделения взаимодействий. Последовательное рассмотрение ближних, средних и дальних взаимодействий, как и взаимодействий, разделенных иным способом, может иметь смысл и привести к предсказанию нативной конформации белка только в том случае, если отобранные на предшествующих этапах наборы конформационных состояний аминокислотных остатков будут непременно включать состоя-Иия, удовлетворяющие условиям последующих этапов. Гарантом здесь Является постулированное в теории положение о согласованности всех видов взаимодействий валентно-несвязанных атомов в нативной конформации белка. [c.105]

    Одно из главных положений теории пространственной организации белков состоит в предположении о наличии в нативных конформациях макромолекул согласованности ближних, средних и дальних взаимодействий (см. часть II). На этом утверждении строится поэтапный подход к априорному предсказанию трехмерных структур природных полипептидов, поскольку только при гармонии в белковой глобуле всех внутриостаточных и межостаточных невалентных взаимодействий атомов становится возможным и оправданным разделение конформационной проблемы белка на ряд связанных между собой менее громоздких проблем и их последовательное решение. Это же положение отражает суть термодинамической бифуркационной теории свертывания белковой цепи, объясняющей возможность, направленность и предел протекания по беспорядочно-поисковому механизму спонтанного, нелинейного неравновесного процесса сборки высокоорганизованной пространственной структуры из флуктуирующей полипептидной цепи. [c.413]


    Бифуркационная термодинамическая теория и обобщение известных опытных данных о нативных конформациях белковых молекул послужили основой для разработки физической теории структурной организации белка. Физическая теория позволила представить громоздкую задачу структурной организации белка в виде менее сложных задач, поддающихся последовательному рассмотрению. Поэтапный подход к решению осуществлен путем разбиения всех внутримолекулярных невалентных взаимодействий на ближние, средние и дальние. Количественная оценка энергии всех видов взаимодействий производилась с помощью метода атом-атомных потенциалов ван-дер-ваальсовых, электростатических и торсионных взаимодействий и водородных связей (см разд 2.2). [c.586]

    Решающим доказательством справедливости предложенного подхода к решению задачи о структурной организации белка явились результаты априорного расчета трехмерной структуры бычьего панкреатического трипсинового ингибитора и количественное представление свертывания белковой цепи как самопроизвольного, быстрого и безошибочного процесса. Рассчитанная при использовании аминокислотной последовательности и стандартной валентной схемы конформация белка совпала с кристаллической структурой молекулы БПТИ. Точность расчета значений всех двугранных углов вращения ф, у, (О и %, расстояний между атомами С всех остатков и длин реализуемых водородных связей оказалась близкой точности рентгеноструктурного анализа белков высокого разрешения. На основе данных о конформационных возможностях аминокислотной последовательности БПТИ получили свое объяснение все детали ренатурации белка, механизм которой был изучен экспериментально. Тем самым, во-первых, была подтверждена неравновесная термодинамическая модель сборки белка. Во-вторых, была апробирована физическая теория структурной организации белка, вскрывающая природу бифуркационных флуктуаций и утверждающая представление о нативной конформации белковой молекулы как о глобальной по внутренней энергии структуре, плотнейшим образом упакованной и согласованной в отношении всех своих внутриостаточных и межостаточных невалентных взаимодействий. Именно гармония между ближними, средними и дальними взаимодействиями ответственна за резкую энергетическую дифференциацию и выделение из множества возможных структурных вариантов стабильной и уникальной для данной аминокислотной последовательности конформации белка. В-третьих, продемонстрированы реальность фрагментарного метода теоретического конформационного анализа пептидов и белков и удовлетворительное количественное описание с его помощью их пространственных структур применительно к условиям полярной среды. Под- [c.589]

    Следующий шаг в развитии работ этого направления был сделан Немети и Шерагой [138]. Невалентные взаимодействия в белковой глобуле они разделили на внутриостаточные и межостаточные, а последние подразделили на взаимодействия ближнего порядка, к которым отнесли взаимодействия данного остатка с четырьмя предшествующими и четырьмя последующими в цепи остатками L (п с п 4), взаимодействия среднего порядка (п с п 5 - 20) и дальнего порядка (п с п > 20). [c.280]

    Рнс. М- Ближние (а), средние (б) и дальние (в) взаимодействия валентно-несвязанных атомов аминокислотных остатков, опреде-JgпoШИX пространственную структуру белка [c.105]


Смотреть страницы где упоминается термин Взаимодействие ближние, средние, дальние: [c.467]    [c.467]    [c.106]    [c.220]    [c.249]    [c.291]    [c.321]    [c.466]    [c.467]    [c.469]    [c.470]    [c.500]    [c.157]    [c.280]    [c.106]    [c.220]    [c.249]    [c.291]    [c.321]    [c.466]    [c.467]    [c.469]    [c.470]    [c.500]    [c.189]    [c.189]    [c.190]    [c.207]   
Проблема белка (1997) -- [ c.105 , c.109 , c.181 , c.220 , c.291 , c.306 , c.309 , c.315 , c.321 , c.336 , c.587 , c.588 ]

Проблема белка Т.3 (1997) -- [ c.105 , c.109 , c.181 , c.220 , c.291 , c.306 , c.309 , c.315 , c.321 , c.336 , c.587 , c.588 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ближние

Дальнее взаимодействие



© 2025 chem21.info Реклама на сайте