Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липиды содержание в тканях

    Особую роль в регуляции метаболизма липидов играют гормоны. Следует обратить внимание на то, что жировой обмен регулируется практически теми же гормонами, что и обмен углеводов — адреналин и норадреналин, глюкагон, глюкокортикоиды, гормоны передней доли гипофиза (соматотропный гормон и АКТГ), а также тироксин и половые гормоны. Адреналин и норадреналин активируют липолиз в жировой ткани, в результате усиливается мобилизация жирных кислот из жировых депо и содержание неэстерифицированных жирных кислот в плазме повышается. Клк уже отмечалось (гл. 23.3), эти гормоны через цАМФ активируют соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т. е. образованию ее активной формы. [c.356]


    ОПРЕДЕЛЕНИЕ ОБЩЕГО СОДЕРЖАНИЯ ЛИПИДОВ В ТКАНЯХ [c.70]

    Небольшие органические молекулы, находящиеся в живых тканях, можно разделить на две большие группы. Одна из них включает водорастворимые вещества, такие, как аминокислоты и сахара, нерастворимые в апротонных растворителях (хлороформе или эфире). Другая группа охватывает жирорастворимые вещества, которые растворяются в хлороформе, эфире или других органических растворителях, но обычно не растворяются в воде. Эти соединения носят общее название липиды. Ясно, что такое грубое разделение, основанное на способности к растворению в определенных типах растворителей, не учитывает общие специфические структурные особенности соединений. Внутри каждой обширной группы веществ можно выделить ряды соединений с общими функциональными группами и характерными структурными особенностями. Низкая растворимость в воде предполагает, что в липидах преобладают неполярные (т. е. углеводородные) фрагменты, а высокополярные группы и группы, обладающие способностью образовывать водородные связи, или вообще отсутствуют, или составляют незначительную часть молекулы. Среди соединений, входящих в класс липидов, встречается немало таких, которые имеют чрезвычайно большое значение для биологии. К ним относятся витамины А и О (разд. 22.2) и стероидные гормоны (разд. 22.2), находящиеся в следовых количествах и все вместе составляющие лишь очень малую часть от общего содержания липидов в любой живой системе. [c.329]

    Свойства. Является представителем альбуминов. Альбумины — простейшие природные глобулярные белки, присутствующие во всех растительных и животных тканях в виде соединений с липидами, углеводами и другими компо- нентами клетки. Содержатся в белке яиц, сыворотке крови, молоке, семенах-, растений и др. Альбумины входят вместе с глобулинами в группу-растворимых белков, но отличаются от них способностью растворяться в дистиллированной воде и в полунасыщенном (50% насыщения) растворе сульфата аммония. Способны к образованию хорошо оформленных кристаллов, при нагревании кри- сталлы белков свертываются. При гидролизе альбуминов образуются различные аминокислоты (характерно наличие серусодержащих и дикарбоновых аминокислот и отсутствие или относительно низкое содержание гликокола), [c.26]

    Сведения о липазах растительных тканей пока еще отрывочны, но ясно, что эти ферменты имеются во всех тканях растений. Впрочем, их часто наблюдали во время разрушения тканей. Это приводит к активации явлений липолиза даже при малом содержании воды. Таким образом, в ряде случаев липиды присутствуют в белковых препаратах в виде продуктов гидролиза, а не в нативной форме. [c.293]

    Вторая группа расстройств включает нарушения липидного обмена в процессе синтеза и распада липидов в тканях организма человека. Увеличение об-шцх липидов в сьшоротке крови носит название гиперлипемии. В норме содержание липидов в плазме крови следующее общие липиды — 4—8 г/л триацилглицеролы — 0,5—2,1 ммоль/л фосфолипиды общие — 2,0—3,5 ммоль/л холестерол общий — 4,0—10,0 ммоль/л. Часто гиперлипемия является следствием поражения печени, которая играет важную роль в обмене липидов. Нарастание общих липидов в сыворотке крови наблюдается при острых и хронических гепатитах, при механических и паренхиматозных желтухах, при циррозе печени. [c.357]


    Круглодонную колбу для роторного испарителя доводят до постоянного веса, помещают в нее экстракт липидов, содержащий не менее 10—20 мг липидов, растворитель упаривают на роторном испарителе. Колбу с осадком липидов доводят до постоянного веса в вакуум-эксикаторе над КОН. Путем повторного взвешивания определяют вес осадка липидов и рассчитывают содержание липидов в тканях в процентах с учетом взятой навески. Взвешивание проводят на аналитических весах. [c.71]

    Различные ткани зерна имеют неодинаковое содержание липидов — от 29 % в зародыше до 1 % в эндосперме, а в алейроновом слое их содержится 9 % [49]. Если подходить с качественной оценкой, то липиды зародыша являются преимуш,ественно нейтральными в эндосперме связанные с белками липиды в основном являются гликолипидами, а те, что связаны с крахмалом, — фосфолипидами. Основные жирные кислоты этих липидов на 58 % представлены линолеатом, на 15 и 20 % — соответственно олеатом и пальмитатом. Таким образом, полиненасыщенные жирные кислоты представляют более половины остатков жирных кислот. [c.286]

    При исследовании особенностей нарушения обмена липидов при ряде заболеваний важная роль принадлежит определению метаболитов липидного обмена. Для этих целей в лабораториях определяют концентрацию метаболитов липидного обмена в сыворотке крови. В крова содержатся все фракции липидов, которые находятся в тканях человека. Наиболее часто для целей лабораторной диагностики пользуются определением общих липидов крови, триглицеридов, жирных кислот, холестерина и его эфиров и некоторых других показателей липидного обмена. Содержание некоторых фракций липи дов в сыворотке здорового человека представлены в таблице  [c.148]

    В зависимости от типа ткани, из которой выделены НПК, составы препаратов различаются соотношением белков и липидов. Содержание нуклеиновых кислот практически одинаково во всех препаратах, поскольку клетки всех дифференцированных тканей организма содержат одинаковый набор хромосомных нуклеиновых кислот. [c.158]

    Простой приближенный анализ состава ткани проводят следующим образом. Ткань полностью высушивают в вакууме при низкой температуре и из полученного твердого материала соответствующими растворителями экстрагируют липиды. После выпаривания растворителя взвешивают оставшиеся липиды. Этим методом показано, что в молодых зеленых овощах содержится 2—5% липидов в пересчете на сухой вес. Даже в очень постном мясе содержание липидов составляет 10—30%. Содержание белка часто оценивают по содержанию азота, умножив последнее на 6,25. В молодых зеленых растениях белок мол<ет составлять 20—30% сухого веса, но очень постное мясо содержит его до 50—70%. [c.156]

    ИК-спектроскопия не получила столь широкого распространения среди биологов, как среди химиков, по той причине, что биологические объекты часто не дают хорошо разрешенных спектров (по крайней мере при комнатной температуре). Тем не менее сообщается о некоторых интересных приложениях. В одном из них метод НПВО применяется для получения спектра поверхности живой кожи. Удалось проследить во времени за поглощением в организме инертных и биологически активных веществ [90, 222]. Сообщается о проведении методом ИК-спектроскопии таких стандартных измерений, как анализ крови на содержание липидов [94, 231] и распознавание типов живых тканей [34, 70]. Имеются обзоры по приложениям метода ИК-спектроскопии к биологическим системам [139, 206, 207, 252, J6], [c.209]

    Разумеется, содержание липидов зависит от липидных структур, имеющихся в рассматриваемых тканях. Однако липиды мембран всегда составляют небольшую часть всех липидов клетки. Так, даже в листьях, которые обеспечивают с помощью хлоропластов накопление световой энергии, на долю липидов, представляющих около половины состава ламелл хлоропластов (см. 6.3), приходится лишь 2% сырой массы листьев [22]. [c.288]

    Содержание белка в цереброспинальной жидкости незначительно (0,15— 0,40 г/л), причем отношение альбумины/глобулины равно 4 липидов в сотни раз меньше, чем в плазме крови. Возможно, что липиды плазмы крови в цереброспинальной жидкости отсутствуют. Общее содержание низкомолекулярных азотсодержащих веществ, особенно аминокислот, в 2—2,5 раза меньше, чем в крови. В ткани мозга, как отмечалось, количество свободных аминокислот велико и во много раз превышает концентрацию их в крови и тем более в цереброспинальной жидкости. Установлено, что некоторые аминокислоты (например, глутаминовая кислота) почти не проникают через гематоэнцефалический барьер. В то же время амиды аминокислот (в частности, глутамин) легко преодолевают этот барьер. Содержание глюкозы в цереброспинальной жидкости относительно велико (2,50—4,16 ммоль/л), но несколько меньше, чем в крови, причем концентрация глюкозы в спинномозговой жидкости может повышаться или снижаться в зависимости от изменений содержания глюкозы в крови. [c.644]

    Резервная. Липиды являются наиболее компактной формой депонирования энергии в клетке. Они резервируются в адипоцитах — клетках жировой ткани. Содержание жира в организме взрослого человека составляет 6—10 кг. [c.285]

    Нативные растворы шампуней не оказывали раздражающего и сенсибилизирующего влияния на кожу головы и рук человека, не изменяли физико-химических свойств крови и белков тканей органов, уровня окислительно-восстановительных процессов (активности каталазы и пероксидазы) в организме животных. После мытья волос этими средствами величина pH поверхности кожи рук возрастала на 0,8—1,3 единицы, но через 1,5 ч она снижалась до исходной. Содержание общих липидов на поверхности кожи рук уменьшалось на 35% (при испытаниях Золотой рыбки и Кориандра ), на 46% ( Влада ), на 53% ( Лужок ) и на 76% ( Пихта ). Для их полной регенерации после применения первых двух средств требовалось 3 ч, после применения трех остальных — 4 ч. [c.142]


    Запасные липиды (в основном триглицериды) являются энергетическим резервом организма. В растениях они накапливаются главным образом в плодах и семенах (табл. 23), у животных и рыб — в подкожных жировых тканях и в тканях окружающих внутренние органы, а также в печени, в мозговой и нервной тканях. Содержание их зависит от многих факторов (вида, возраста, режима питания и т, д.). [c.198]

    Количество протоплазматических липидов в листьях, стеблях, плодах, корнях растений обычно достигает 0,1—0,5% от веса сырой ткани, а содержание запасного жира в семенах различных растений характеризуется следующими величинами (в процентах) рожь, ячмень, пшеница — 2—3 хлопчатник, [c.304]

    Анализ локализации и содержания липидов в тканях, богатых белками, позволяет предвидеть случаи, когда взаимодействия липидов и протеинов будут отражаться на технологии. В дезорганизованных тканях липиды нередко представлены легкоразру-шающимися молекулами, подверженными гидролизу и окислению. Мы постараемся очертить разновидности и последствия этих реакций. [c.285]

    Среди химических компонентов головного мозга особое место занимают липиды, высокое содержание и специфическая природа которых придают мозговой ткани характерные особенности. В группу липидов головного мозга входят фосфоглицериды, холестерин, сфингомиелины, цереброзиды, ганглиозиды и очень небольшое количество нейтрального жира (табл. 19.2). Многие липиды нервной ткани находятся в тесной взаимосвязи с белками, образуя сложные системы типа протеолипидов. [c.630]

    С негативным влиянием липидов сталкиваются при работе с кровью, тканями печени, мозга и женским молоком В этом случае трудности связаны с образованием эмульсий в присутствии липидов. Мини1 ал1.ного содержания последних добиваются с помощью различных приемов экстракции-реэкстракции, вымораживания, сорбции и др 115 . [c.205]

    Липиды — природные соединения, обладающие гидрофобными свойствами. Они наряду с белками и углеводами составляют основную массу органического вещества живых клеток и тканей, присутствуют в животных, растительных и бактериальных клетках. В организме высших животных и человека содержание липидов в различных органах и тканях не одинаково. Наиболее богата липидами нервная ткань (20—25%). Липиды, являясь структурным компонентом мембранных липопротеи-дов, составляют не менее 30% общей сухой массы мембраны. [c.237]

    Изучая распределение остатков ДДТ в мышечной и жировой ткани крупного рогатого скота, Т. S. Rumsey и др. (1967) установили, что после введения масляного раствора ДДТ в рубец в количестве 300 мг/кг массы животного максимальные остатки пестицида обнаруживаются в жировой ткани. Содержание ДДТ в мышцах составляло менее 10% от остатков в жировой ткани (табл. 35). Концентрация пестицида в жире разных видов жировой ткани оказалась практически одинаковой. Остатки ДДТ в жире большой поясничной мышцы были почти в 3 раза больше, чем в липидах жировой ткани. [c.291]

    Наиболее распространенной является олеиновая кислота содержание ее в оливковом масле составляет 85% ( от общего содержания кислот), в пальмоядроБОМ масле — 74 %, в других растительных маслах — 10—50%. Олеиновую кислоту выделяют из жира многих тепло- и холоднокровных животных, а также из липидов различных тканей и орга- [c.193]

    Уровень свободных жирных кислот в мозге весьма невелик напротив, установлено высокое содержание и офомное разнообразие жирных кислот в липидах нервной ткани. Основную массу жирных кислот липидов мозга составляют пальмитиновая 16 0, стеариновая 18 0, олеиновая 18 1 и арахидоновая 20 4 кислоты. В мозге идентифицировано около 40 индивидуальных жирных кислот, в том числе полиненасыщенных, длинноцепочечных и гидрокислот, которыми особенно богаты цереброзиды и сульфатиды. Гетерогенность жирных кислот липидов мозга лежит в основе сфуктурной лабильности мембран и определяет их важнейшие физико-химические свойства. [c.143]

    Он обнаружен во всех животных липидах, в крови и яичном желтке и отсутствует или присутствует в незначительном количестве в липидах растений. Холестерин является структурным компонентом клетки, участвует в обмене желчных кислот, гормонов. 70—80 % холестерина от его общего содержания в организме человека (250 г на 65 кг массы тела) синтезируется в печени и других тканях, около 20 % поступает с пищей. Содержание холестерина в некоторых животных продуктах питания приведенс в табл. 7. [c.32]

    Определение по фосфору считается наиболее надежным методом оценки количества нуклеиновых кислот, так как его процентное содержание в наименьшей степени зависит от нуклеотидного состава для ДНК оно составляет 9,8—10,1%, для РНК —9,1—9,6 26. При определении фосфора нуклеиновых кислот в тканях необходимо предварительно удалить свободные нуклеотиды, неорганический фосфат, а также все фосфорсодержащие соединения ненуклеотидной природы, в частности липиды. [c.163]

    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    Апобелки выполняют не только структурную функцию, но и обеспечивают активное участие комплексов ЛП в транспорте липидов в токе крови от мест их синтеза к клеткам периферических тканей, а также обратный транспорт холестерина в печень для дальнейших метаболических превращений. Апобелки выполняют функцию лигандов во взаимодействии ЛП со специфическими рецепторами на клеточных мембранах, регулируя тем самым гомеостаз холестерина в клетках и в организме в целом. Не меньшее значение имеет также регуляция апобелками активности ряда основных ферментов липидного обмена лецитин-холестеролацилтрансферазы, липопротеинлипазы, печеночной триглицеридлипазы. Структура и концентрация в плазме крови каждого апобелка находится под генетическим контролем, в то время как содержание липидов в большей степени подвержено влиянию диетических и других факторов. [c.576]

    На долю белков приходится примерно 40% от сухой массы головного мозга. Мозговая ткань является трудным объектом для изучения белкового состава вследствие большого содержания липидов и наличия белково-ли-пидных комплексов. [c.628]

    Выраженная гиперлипемия развивается при сахарном диабете. Обычно она сопровождается ацидозом. Недостаток инсулина приводит к снижению фосфодиэстеразной активности, что в конечном счете способствует активации липазы и усилению липолиза в жировых депо. Гиперлипемия при сахарном диабете носит транспортный характер, так как избыточный распад жиров на периферии приводит к повышенному транспорту жирных кислот в печень, где происходит синтез липидов. Как отмечалось ранее, при сахарном диабете и голодании в печени образуется необычно большое количество кетоновых тел (ацетоуксусная и р-гидроксимасляная кислоты), которые с током крови транспортируются из печени к периферическим тканям. Хотя периферические ткани при диабете и голодании сохраняют способность использовать кетоновые тела в качестве энергетического материала, однако ввиду необычно высокой их концентрации в крови органы не справляются с их окислением и, как следствие, возникает состояние патологического кетоза, т. е. накопление кетоновых тел в организме. Кетоз сопровождается кетонемией и кетонурией — повышением содержания кетоновых тел в крови и выделением их с мочой. Возрастание концентрации триацилглицеролов в плазме крови отмечается также при беременности, нефротическом синдроме, ряде заболеваний печени. Гиперлипемия, как правило, сопровождается увеличением содержания в плазме крови фосфолипидов, изменением соотношения между фосфолипидами и холестеролом, составляющем в норме 1,5 1. Снижение содержания фосфолипидов в плазме крови наблюдается при остром тяжелом гепатите, жировой дистрофии, циррозе печени и некоторых других заболеваниях. [c.357]

    С помощью биохимического метода определяется коллаген по содержанию оксипролина в гидролизате легкого и содержание липидов в легких. Наиболее принятой методикой определения оксипролина является методика Neumann и Logan (1950), модифицированная Хвапилом (1960). Содержание суммарных липидов в легких определяется в сухой легочной ткани по потере веса прп экстрагировании эфиром в аппарате Сокслета (Б. А. Кацнельсон, Л. Г. Бабушкина, Б. Т. Ве-личковский, 1964). [c.58]

    Токсическое действие. Обладает широким спектром токсического действия с многообразными клиническими проявлениями. В крови В. специфически связывается с иммуноглобулинами, заметно снижая их содержание. Проникновение металлического В. через мембраны объясняют образованием специфического растворимого комплекса с белками. В. связывается негистонными белками клеточных ядер и кумулирует в клетках без образования морфологически обособленных включений. Соли В. угнетают амино- и карбоксипептидазы. Проникая через плацентарный барьер, В. оказывает эмбриотропное действие преодолевая гематоэнцефалический барьер, вызывает энцефалопатию. Поражения ЦНС, вызываемые В., как и алюминием, объединяют в группу миоклонических энцефалопатий . При этом возрастает концентрация В. в липидах мозга, мозжечке и таламусе, особенно в субклеточных фракциях однако прямой зависимости между выраженностью мозговых нарушений и уровнем концентрации В. в крови не обнаружено. Среди реже встречающихся токсикологических проявлений действия В. и его соединений указывают на возможность поражения суставов, костной ткани, аллергозов, крово-течений, агранулоцитоза, пластической анемии. К числу характерных симптомов инток- [c.434]

    Хроническое отравление. Животные. В течение 4 мес. 5 раз в неделю по 4 ч крысы-самцы подвергались ингаляционному воздействию сульфата К. в концентрациях 5,5 и 15,0 мг/м и калимагнезии в тех же концентрациях. При этом установлен политропный характер действия обоих соединений, особенно в больших концентрациях повышалась двигательная активность животных, отмечался лейкоцитоз (калимагнезия), нарушение коллоидного и электролитного состояния сыворотки крови отмечались повышение, а затем снижение суммарной активности дегидрогеназ, изменение сорбционной способности печени, почек в селезенки, уменьшение относительной массы печени, почек, селезенки и надпочечников. Наблюдалось увеличение сердечного автоматизма, увеличение содержания липидов и окснпролина в ткани легких, нарушение углеводного, жирового и белкового обмена, изменения проницаемости гистогематиче- [c.48]

    Поэтому содержание НК, определяемое биохимически или цитохимически, может в некотором роде служить показателем удельной физиологической активности ткани , т. е. соотношения веществ и структур протоплазмы с веществами и структурами метаплазмы [16]. К последним относятся запасные белки, углеводы, липиды, компоненты клеточных стенок, содержимое вакуолей, млечных ходов и т. д. [11]. [c.21]

    Накопление Г. в тканях зависит от содержания в них липидов (Baker, Ri kart) 1 г лиц 1да связывает 4 мг Г., а в крови на 1 г липида приходится 25 мг Г. Наибольшие его количества депонируются в тканях околопочечного жира, надпочечников, грудины, сальника (Бабанов и др.). Насыщение крови, головного мозга, надпочечников, почек и селезенки наблюдается через 4—5 ч. В печени концентрация Г. повышалась линейно, и через 10 ч еще не отмечалось насыщения. В ткани головного мозга накопление идет медленнее, чем в других тканях. [c.33]


Смотреть страницы где упоминается термин Липиды содержание в тканях: [c.558]    [c.75]    [c.139]    [c.139]    [c.142]    [c.552]    [c.143]    [c.20]    [c.114]    [c.18]    [c.307]    [c.339]    [c.31]   
Биохимия Том 3 (1980) -- [ c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Липиды

Липиды содержание



© 2024 chem21.info Реклама на сайте