Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плоская диаграмма состояния однокомпонентной системы

Рис. XII, 1. Плоская диаграмма состояния однокомпонентной системы в осях давление—температура. Рис. XII, 1. Плоская диаграмма состояния однокомпонентной системы в осях давление—температура.

    Для построения пространств, изобарной или изотермич. Д.с. по координатной оси, перпендикулярной композиц. треугольнику, откладывают соотв. Т или р. При этом фигуративные точки системы в целом и ее трехкомпонентных фаз оказываются расположенными внутри трехгранной призмы, грани к-рой изображают двойные системы, ребра-однокомпонентные системы. На рис. 9, а изображена простейшая диаграмма плавкости тройной системы, компоненты к-рой А, В и С не образуют друг с другом твердых р-ров и (или) хим. соед. и не расслаиваются в жидком состоянии (неограниченно взаимно растворимы). Пов<ть т-р начала кристаллизации тройных расплавов (пов-сть ликвидуса) состоят из трех полей Тд 1 з, ТвЕ,ЕЕ2 и Т Е ЕЕ. , отвечающих кристаллизации А, В и С соотв. и разделенных тремя пограничными кривыми , , Е 2Е и , Ортогональные проекции пограничных линий на композиц. треугольник образуют г наз. плоскую диаграмму плавкости тройной системы (рис. 9, б) с тремя полями кристаллизации компонентов А , з, В [ 2, С з з Более полную информацию о системе дает плоская диаграмма с нанесенными на ней изотермами проекциями кривых пересечения пов-сти ликвидуса равноотстоящими плоскостями (рис. 9, в). [c.35]

    В случае одкокомионентпой системы в уравнение состояния входят три переменные например температура Т, давление р и концентрация С или Т, р и мольный объем V. Любые две из них можно рассматривать как независимые переменные, а третью — как их функцию. В большинстве случаев в качестве независимых переменных принимают температуру и давление. Откладывая значение этих двух переменных по двум осям прямоугольной системы координат, получаем двумерную (плоскую) диаграмму, кал<дая точка на плоскости которой выражает условия (сочетание температуры и давления), при которых находится система. Плоская диаграмма состояния однокомпонентной системы позволяет определить возможное число и характер фаз при выбранных условиях, но никак не отралоет объем системы, а следовательно, и изменения объемов при переходе от одной фазы к другой. Эти изменения могут быть очень значительными, например при переходе жидкости или кристаллов в пар. Так, при 273 К Упар/ вода=1240. [c.269]

    Таким образом, плоская диаграмма состояния однокомпонентной системы позволяет определить возможное число и характер фаз при выбранных условиях. Но плоская диаграмма никак не отражает объем системы, а следовательно, и изменения объемов при переходе от одной фазы к другой. Эти изменения могут быть очень значительными, например при переходе жидкости или кристаллов в пар. [c.357]

    Из этого соотношения следует, что число сосуществующих в равновесии фаз не может быть больи е трех, так как число степеней свободы не может быть меньше нуля. В свою очередь число независимых переменных не может быть больше двух, так как число фаз не может быть меньше единицы. Поэтому для однокомпонентной системы зависимость между переменными можно выразить диаграммой на плоскости, а в качестве переменных выбрать температуру и давление ввиду того, что они более доступны непосредственному изменению. Понятие концентрации в такой системе лишено смысла. Плоская диаграмма состояния однокомпонентной системы позволяет определить возможное число и характер фаз при выбранных условиях. Но следует учитывать, что плоская диаграмма в координатах р — Т не отражает изменения объема системы при переходе от одной фазы к другой, между тем такие изменения могут быть весьма значительными, например при переходе жидкостей или кристаллов в пар. Чтобы изобразить графически зависимость между р, Т, о, необходимо использовать систему координат из трех взаимно перпендикулярных осей, каждая из которых отвечает значениям одной переменной. Рассмотрим примеры диаграмм однокомпонентных систем. [c.171]


    На диаграмме состояния однокомпонентной системы (рис. III. 1) нонвариантному равновесию отвечает вполне определенная точка А, так называемая тройная точка (подробнее о них см. III.6). Моновариантным равновесиям отвечают линии АВ, АС, AD, так как любая точка линии определяется на плоской диаграмме лишь одной координатой. Наконец, дивариантпым равновесиям отвечают определенные участки плоскости — так называемые поля той или иной фазы (например, поле жидкости — AD, поле пара — ВАС). Таким образом, на диаграмме состояния каждой фазе отвечает определенный геометрический образ — участок плоскости — поле линии отвечают двум [c.29]

    Для многокомпонентных систем помимо температуры и давления в качестве параметров состояния фигурируют также соответствующие концентрации. При этом картина хотя и усложняется, но принципиально не меняется. Как и в случае однокомпонентной системы, в более сложных системах можно перейти от пространственной диаграммы, характеризующей зависимость изобарно-изотермического потенциала от каких-либо двух параметров состояния (приняв остальные постоянными), к плоской диаграмме состояния в координатах Т—х, р—х и р—Т (дг—концентрация одного нз компонентов). Принципиальная схема построения и перехода к диаграмме Т—х для двухкомпонентной двухфазной системы при постоянном давлении аналогична вышеописанной для однокомпонентной системы. [c.257]

    V f(P, Т). Если по трем координатным осям отложить давление, температуру и объем системы, то полученная пространственная диаграмма, называемая диаграммой состояния, дает графическое изображение зависимости между Р, Т и V. Однако построение таких пространственных диаграмм связано с определенными трудностями, и они мало удобны для практического применения. Для характеристики состояния однокомпонентной системы чаще используют плоскую диаграмму, представляющую собой проекцию пространственной диаграммы на плоскость Р — Т. Плоская диаграмма описывает состояния однокомпонентной системы и фазовые равновесия в ней при различных параметрах. В основе анализа диаграмм состояния, как показал Н. С. Курнаков, лежат два общих положения принцип непрерывности и принцип соответствия. Согласно принципу непрерывности при непрерывном изменении параметров, определяющих состояние системы, свойства отдельных фаз изменяются также непрерывно, свойства же всей системы в целом изменяются непрерывно лишь до тех пор, пока не меняется число или природа ее фаз. При исчезновении старых или появлении новых фаз свойства системы в целом изменяются скачкообразно. Согласно. принципу соответствия на диаграмме состояния при равновесии каждому комплексу фаз и каждой фазе в отдельности соответствует свой геометрический образ плоскость, линия, точка. Каждая фаза на такой диаграмме для одно-компонентной системы изображается плоскостью, представляющей собой совокупность так называемых фигуративных точек, изображающих состояния равновесной системы. Равновесия двух фаз на диаграмме состояния изображаются линиями пересечения плоскостей, а равновесие трех фаз — точкой пересечения этих линий, называемой тройной точкой. По диаграмме состояния можно установить число, химическую природу и границы существования фаз. Плоские диаграммы состояния, построенные в координатах Р — Т, не дают сведений о молярных объемах фаз и их изменениях при фазовых переходах. Для решения этих вопросов используются проекции пространственной диаграммы на плоскости Р V или Т V. [c.331]

    В случае однокомпонентной системы в уравнения состояния входят три переменные например температура Т, давление р и концентрация с или Т, р и мольный объем V. Любые две из них можно рассматривать как независимые переменные, а третью как их функцию. В большинстве случаев в качестве независимых переменных принимают температуру и давление. Откладывая значения этих двух переменных по двум осям прямоугольной системы координат, получаем двумерную (плоскую) диаграмму (рис. XII, 1), [c.356]

    Плоская р—Т диаграмма однокомпонентной системы позволяет определить возможное число и характер фаз при выбранных условиях изменения. Полное представление дает объемная р, Т, V) диаграмма. Состояние каждой фазы на ней передается совокупностью значений р, Т, V, связанных уравнением состояния фазы, т. е. соответствующей поверхностью. Области на плоской р—Т диаграмме являются проекциями этих поверхностей на сечение объемной диаграммы р—Т плоскостью. [c.160]


Смотреть страницы где упоминается термин Плоская диаграмма состояния однокомпонентной системы: [c.155]    [c.155]    [c.331]   
Смотреть главы в:

Правило фаз Издание 2 -> Плоская диаграмма состояния однокомпонентной системы

Правило фаз Издание 2 -> Плоская диаграмма состояния однокомпонентной системы




ПОИСК





Смотрите так же термины и статьи:

Диаграмма плоская

Диаграммы системы

Диаграммы состояния

Плоская диаграмма состояния

Система однокомпонентная

Системы состояние



© 2025 chem21.info Реклама на сайте