Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие твердые тела

    В начале XX в. Друде и Лоренц применили к электронам проводимости металлов кинетическую теорию газов и ввели представления об электронном газе. Эта теория свободных электронов хорошо объясняла закон Ома и связь электрической проводимости с теплопроводностью (закон Видемана—Франца), но не объяснила главного отличия металлов от других твердых тел, а именно температурную зависимость электрической проводимости. Действительно, в теории свободных электронов Друде и Лоренца кинетическая энергия электрона равна [c.130]


    Действие ионизирующего излучения на полимеры, в отличие от воздействия на другие твердые тела, например на ионные кристаллы, в которых при облучении обычно происходят радиационные повреждения, часто приводит к улучшению их свойств. [c.196]

    Необъяснимость каталитических реакций вызвала большой интерес, и в первой половине XIX в. почти все ученые того времени уделяли катализу большое внимание. В результате многочисленных работ было получено огромное количество новых данных, требовавших объяснений и обобщений. К этому периоду относятся замечательные работы Г. Дэви по беспламенному горению, что привело его к изобретению хорошо известной безопасной лампы для рудокопов, работы Л. Тенара по разложению аммиака над различными металлами, исследования М. Фарадея, объединенные им в труде О способности металлов и других твердых тел соединять газы между собою , и созданная им же одна из первых адсорбционных теорий катализа. Сюда же относятся работы И. Берцелиуса, Ю. Либиха, И. Деберейнера, А. Бертолле, Е. Митчерлиха, А. де ла Рив и многих других, о работах которых излагается ниже. [c.14]

    Механическое истирающее воздействие на металл другого твердого тела при наличии коррозионной среды (например, зубьев шестерен, омываемых водой) или непосредственное воздействие самой жидкой или газообразной коррозионной среды (например, воды на гребные винты судов, насосы, трубы) приводит к ускорению коррозионного разрушения вследствие износа защитной пленки окислов или других соединений, образующихся на поверхности металла в результате взаимодействия со средой. К этому виду разрушения, называемого коррозией при трении, недостаточно устойчивы, например, серый чугун с повышенным содержанием углерода, оловянистые бронзы и некоторые другие материалы. [c.338]

    Увеличение степени волокнистости кокса, как и всякого другого твердого тела, обладающего упругими свойствами, приводит к увеличению эффекта упругого последействия. Объем такого тела в большей степени восстанавливается после снятия нагрузки. Симметрично построенные тела обладают большей прочностью и меньшим коэффициентом упругого расширения. [c.186]

    В отличие от металлов и многих других твердых тел коэффициент линейного расширения нефтяного кокса определяют после предварительной прокалки его до температуры не ниже испытуемой. [c.230]

    В табл. 1 предпринята попытка дать по возможности более широкую сводку сведений о температурной зависимости теплопроводности чистых веществ, сплавов и других тпердых тел. Данные о значениях теплопроводности при комнатных температурах для некоторых других твердых тел приведены в табл. 2. При использовании таблиц нужно иметь в виду следующее  [c.253]


    АДСОРБЦИЯ — поглощение газов или растворенных веществ из раствора поверхностью твердого тела нли жидкости. А.— один из видов сорбции. Происходит под влиянием молекулярных сил поверхностного слоя адсорбента. В некоторых случаях молекулы адсорбата (вещества, которое поглощают) взаимодействуют с молекулами адсорбента и образуют с ними поверхностные химические соединения (см. Хемосорбция). При постоянной температуре физическая А. увеличивается при повышении давления или концентрации раствора. Процесс, обратный адсорбции, называется десорбцией. А. сопровождается выделением теп 1а. При повышении температуры А. уменьшается. А. применяется в промышленности для разделения смесей газов и растворенных веществ, для осушки и очистки газов (например, воздуха в противогазах), жидкостей (этиловый спирт очищают от сивушных масел активированным углем). А. играет большую роль во многих биологических и почвенных процессах. Большое значение имеет адсорбция радиоактивных элементов стенками посуды или поверхностью других твердых тел, что приводит к трудностям во время проведения эксперимента и к радиоактивному загрязнению. [c.8]

    Адгезия одними твердыми телами других твердых тел приводит к образованию молекулярных контактных соединений. [c.20]

    К системам с твердой (Т) дисперсионной средой относятся твердый золь, представляющий собой мельчайшие включения твердого тела (кристаллики), рассредоточенные в объеме другого твердого тела — Т/Т (цветное стекло, многие сплавы и драгоценные камни — рубин, изумруд и т. п.)  [c.270]

    Металлы отличаются от других твердых тел некоторыми особыми свойствами — высокой электрической проводимостью и теплопроводностью. Изучая эти свойства, а также зависимость от температуры, можно сделать ряд важных выводов о природе металлической связи. [c.138]

    Твердость — сопротивление проникновению в данный металл другого твердого тела. При сочетании металлических поверхностей (трущиеся пары, зубчатые колеса) необходимо учитывать относительную твердость металлов, так как это определяет надежность и долговечность контакта. Так, например, в редукторах с червячной передачей материал червяка выбирается более твердым (сталь), чем материал червячного колеса (бронза). При эксплуатации этой пары нарезка зубчатого колеса постепенно прирабатывается по нарезке червяка. Это обеспечивает более высокое значение коэффициента полезного действия передачи, долговечность и бесшумность в работе. В табл. 11.4 приведены значения твердости некоторых металлов, вычисленные по Бринелю .  [c.325]

    Для практики важны случаи, когда на границу твердого тела (объекты контроля) падает из жидкости продольная волна (иммерсионный контроль) или она падает из другого твердого тела [c.39]

    Таким образом, проблемы взаимодействия твердых тел, различающихся по геометрии и химии поверхности, со средой (газом, жидкостью или другим твердым телом) приобретают все большую важность. В зависимости от назначения соответствующих материалов эти взаимодействия могут изменяться в самых широких пределах — от слабых межмолекулярных с разной степенью специфичности, особенно важных в молекулярной хроматографии, до сильных химических, необходимых как при создании инертных защитных покрытий, так и при устойчивой иммобилизации хими- [c.6]

    Степень специфичности взаимодействия газ — твердое тело. Процессы хемосорбции, как и любые химические реакции, имеют специфический характер. Это значит, что если какой-то газ хемо-сорбируется данным твердым веществом при некоторых условиях, то из этого не следует, что в аналогичных условиях тот же газ будет хемосорбироваться другим твердым телом, имеющим такую же степень чистоты поверхности. Возможность хемосорбции регулируется химическими потенциалами взаимодействующих веществ и вероятных поверхностных продуктов. [c.265]

    Одна из важнейших проблем современной науки и техники — получение различных строительных и конструкционных материалов, сплавов, пластиков, тампонажных систем и других твердых тел с заданными механическими свойствами и структурой с высокой прочностью, долговечностью и стойкостью — сазана с детальным изучением механических (деформационных) показате лей тел различной природы. Однако ее решение не,входит ни в область механики, ни в область физико-химии поверхностных явлений, ни даже в область молекулярной физики (физики твердого тела) и не может быть выполнена старыми технологическими (в основном эмпирическими) приемами. [c.7]

    Карбид кремния (81С) и нитрид бора (ВЫ) — примеры других твердых тел со структурой алмаза. Формульная единица ВЫ изоэлектронна с формульной единицей СС. Оксид кремния (IV) ЗЮ2, кремнезем, также образует трехмерные структуры. Связи 5 —О создают тетраэдрическое окружение каждого каждый атом кислорода связан с двумя атомами кремния (рис. 6.14). Такая структура встречается в кварце и других кристаллических формах кремнезема. Кварц остается твердым вплоть до 1700 °С. [c.138]


    Конкретным выражением механической прочности является дробимость, которая зависит от способности кусков угля сопротивляться появлению новых отдельностей, главным образом, в результате взаимного их соударения или удара другим твердым телом. Она определяется совокупностью таких свойств угля, как твердость — свойство тела сопротивляться проникновению в него другого более твердого тела пластичность — свойство твердого тела сохранять произведенную деформацию после снятия напряжений хрупкость — свойство материала разрушаться в необратимой форме без заметного поглощения механической энергии. [c.72]

    Введение синтетических смол в резиновые смеси повышает их адгезию к стеклу, металлам и многим другим твердым телам за счет улучшения смачивания. Наибольший эффект оказывают эпоксидные, резорцино- и феноло-формальдегидные, а также другие смолы с функциональными группами. [c.191]

    Наряду с кристаллическим состоянием для твердых веществ довольно распространенной формой существования является стеклообразное состояние. Для этого состояния вещества характерно наличие некоторых специфических физико-химических особенностей, выделяющих стеклообразные вещества среди других твердых тел. [c.122]

    Иногда возникает необходимость направить волну из одного твердого тела через слой жидкости в другое твердое тело из того же вещества (рис. 2,16). [c.49]

    Сильная зависимость прочности от молекулярной ориентации является основным признаком, отличающим прочностные свойства полимеров от закономерностей прочности других твердых тел. Эта зависимость особенно сильно выражена в волокнистых и пленочных материалах. В синтетических и модифицированных природных материалах путем вытяжки осуществляется либо одноосная ориентация (в волокнах), либо двухосная (в пленочных п листовых материалах). [c.134]

    Изучение адсорбции водяного пара усложняется рядом особенностей, и, по-видимому, применение уравнения БЭТ к изотермам воды довольно часто не имеет реальных оснований. В работе [68] указывалось, что значение Лт=10,6 А , рассчитанное с помощью уравнения (2.64) по плотности жидкости при 24°, довольно хорошо согласуется с результатами определения удельной поверхности образцов кварца, анатаза и сульфата бария при адсорбции азота. Однако в опубликованной несколько позднее работе Гаркинса [63] показано, что соответствие с результатами, полученными для стандартного образца анатаза, будет наблюдаться только, если принять Лт=14,8 А . Другие данные, относящиеся к этому твердому телу, представлены в табл. 18. Значение Ат-, равное 14,8 А , приводит в случае других твердых тел к слишком высоким при адсорбции воды результатам по сравнению с результатами, полученными для азота. [c.99]

    При измерении адсорбции азота температура откачки 110° является вполне приемлемой для большинства окислов, карбонатов, сульфатов и других твердых тел — пигментов, катализаторов и других порошков, используемых в промышленности. [c.349]

    Необходимо подчеркнуть, что масс-спектрометрический метод с ионизацией газов электронным ударом (в том или ином варианте) может быть с успехом применен без каких-либо ограничений к любой системе адсорбент (твердое тело) — адсорбат (газ, пар, жидкость, смеси этих веществ) в очень широком интервале температур и давлений. В качестве адсорбентов могут использоваться металлы, полупроводники, диэлектрики, кристаллические и аморфные вещества, дисперсные, пористые, непористые и другие твердые тела. Некоторые примеры, показывающие возможности данного метода при исследовании поверхности твердого тела, можно найти в [4—7]. [c.49]

    В тридцатых годях XX века выяснилось, что соединения переменного состава встре 1аюгся не тол1жо среди соединений металлов лруг с другом, но и среди других твердых тел, например, оксидов, сосдииеинй металлов с серой, азотом, углеродом, водородом.  [c.25]

    Механическое истирающее воздейсивие на металл другого твердого тела при наличии коррозионной среды или непосредственное истирапцее воздействие самой жидкой среды (например, при работе греОннх винтов судов) приводит к ускорению коррозионного разрушения вследствие износа защитной окисной пленки. [c.40]

    Для приборных масел важную роль играют свойства, определяющие их физико-химическое вз аимодействие с поверхностью металла (или другого твердого тела). При амааке приборов омачивание [c.309]

    Чем больше работа адгезии и чем меньше работа когезии, а следовательно, чем меньше поверхностное натяжение жидкости, тем лучше жидкость смачивает поверхность твердого тела. Поэтому жидкости с низким поверхностным натяженйём хорошо смачивают различные твердые поверхности. Так, масла и углеводороды смачивают все известные твердые тела. Их поверхностное натяжение колеблется в пределах 17—28 эрг/слг (см. приложение, табл. 1). Вода хорошо смачйвает только стекло, кварц и другие твердые тела. Ртуть, поверхностное натяжение которой очень велико, смачивает ограниченное число твердых тел. [c.14]

    Физические и химические свойства водорода. При нормальных условиях водород представляет собой очень легкий (в 14,32 раза легче воздуха) бесцветный газ без запг1ха и вкуса. Плотность его при О С и давлении 1,01325-10 Па равна 8,99-10 5 кг/л. Из всех газов водород обладает наибольшей теплопроводностью (в 7 раз больше теплопроводности воздуха). Из-за малой поляризуемости водород очень трудно сжижается. Точки кипения (-252,6°С) и плг1вления (-259,ГС) отстоят друг от друга всего на 6,5°. Жидкий водород — прозрачная бесцветная неэлектропроводная жидкость, поверхностное натяжение которой в 35 раз меньше, чем у воды. Плотность жидкого водорода (-253°С) равна 0,0708 кг/л. Критическая точка характеризуется температурой -239°С и давлением 12,969-10 Па. Твердый водород имеет малоплотную гексагональную решетку. Сжимаемость твердого водорода наибольшая по сравнению с другими твердыми телами. Конденсированное состояние характеризуется малыми значениями энтальпий плавления (0,116 кДж/моль) и кипения (0,882 кДж/моль). Таким образом, теплота кипения жидкого водорода во много раз превосходит теплоту плавления твердого водоу>ода. [c.295]

    Вода обладает многими специфическими свойствами, имеющими ярко выраженный аномальный характер. Все они - следствие особенностей структуры воды и развитости в ней водородных связей. Плавление твердой воды - льда - сопровождается не расширением, а сжатием, а при замерзании воды объем льда значительно увеличивается. Как известно, подавляющее большинство веществ при плавлении расширяется, а при затвердевании, наоборот, уменьшает свой объем. Аномально также влияние температуры на изменение плотности воды при росте температуры от 273 до 277 К плотность увеличивается, при 277 К она достигает максимальной величины, и только при дальнейшем повышении температуры плотность воды начинает уменьшаться. Зависимость теплоемкости воды от температуры имеет экстремальный характер. Минимальная теплоемкость достигается при температуре 308,5 К и вдвое превышает теплоемкость льда, а при плавлении других твердых тел теплоемкость изменяется незначительно. Удельная теплоемкость воды аномально велика, она равна 4,2 Дж/(г К). Вязкость воды в отличие от вязкости других веществ растет с повьццением давления в интервале температур от 273 до 303 К. Вода имеет температуру плавления и кипения, значитель- [c.186]

    Слово кристалл происходит от греческого кгу81а11о8, означающего чистый лед . Это название связано с ошибочным убеждением, что прекрасные прозрачные минералы, найденные в Альпах, были образованы из воды при очень низких температурах. Позднее в XVII в. название кристалл применялось к другим твердым телам, которые также были ограничены множеством плоских граней и обычно имели красивую симметричную форму. Веками с кристаллами было связано нечто мистическое. Печальный ангел безнадежно смотрит на огромный ромбоэдрический кристалл на картине А. Дюрера Меланхолия (рис. 9-2). На картине изображен полиэдр, называемый усеченным ромбоэдром в течение долгого времени шел спор относительно того, нарисовал ли Дюрер какой-либо конкретный минерал, и если это так, то какой [4, 5]. [c.403]

    В настоящее время известно, что молекулярно-ситовыми свойствами, помимо цеолитов, обладают и другие твердые тела, как кристаллические, так и некристаллические, в том числе угли, продукты пиролиза полимеров, пористые стекла, микропористые кристаллические порошки окиси бериллия, а также слоистые силикаты, модифицированные ионным обменом с органическими катио1Шми. [c.14]

    Вскоре стало ясно, что поглощаемый объем зависит и от сорта угля и от того, какой газ поглощается. Предположив, что адсорбционная способность твердого тела зависит от площади его доступной поверхности, де Соссюр [3] в 1814 г. выразил наш взгляд на это явление. А в 1843 г. Митчерлих [4] отметил особую роль угольных пор и предположил, что их диаметр в среднем должен составлять 10 мк. Он рассчитал, что двуокись углерода конденсируется в слоях толщиной 0,005 мм, причем ее плотность приближается к плотности жидкой двуокиси. Эти два фактора, удельная поверхность и пористость (или объем пор), действуют в явлениях адсорбции совместно, и не только на угле, но и на большом ряде других твердых тел. Поэтому измерения адсорбции газов и паров позволяют получить информацию относительно удельной поверхности и структуры пор твердого тела. Следующие главы посвящены детальному рассмотрению способов реализации этой возможности. [c.9]

    В экспериментах использовались и другие твердые тела. Пикеринг и Экстром [54] изучали тот же самый образец ана-таза, который использовался Гаркинсом [55] в его более ранней классической работе по определению удельной поверхности. Они измеряли средний размер частиц на электронном микроскопе (было измерено 500 частиц) и, предполагая сферичность их формы, нашли, что 5 = 13,0 эта величина сравнима со значением 13,8 полученным Гаркинсом по методу адсорбции. Эвинг и Лиу [56] также работали с образцами анатаза и окиси цинка. Найденные ими значения удельной поверхности, определяемые методами электронной микроскопии и адсорбции, различаются не более чем на 20% (табл. 8). Разность этих величин не имела постоянного знака. [c.88]


Смотреть страницы где упоминается термин Другие твердые тела: [c.107]    [c.188]    [c.378]    [c.135]    [c.426]    [c.125]    [c.348]    [c.100]    [c.46]    [c.52]    [c.248]    [c.8]    [c.49]    [c.246]    [c.183]   
Смотреть главы в:

Катализ вопросы избирательности и стереоспецифичности катализаторов -> Другие твердые тела




ПОИСК





Смотрите так же термины и статьи:

Расчеты константы Генри для адсорбции на благородных газах, галогенидах щелочных металлов и других твердых телах

Твердые тела



© 2025 chem21.info Реклама на сайте