Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклы поршневых двигателей внутреннего сгорания

    Исследования [94] относятся к изучению нагарообразующих свойств масел, применяемых в поршневых двигателях внутреннего сгорания, причем во всех случаях исследований на интенсивность нагарообразования масел влияло применяемое топливо — бензин. Кроме того, как было отмечено выше, условия использования масел в поршневых ДВС значительно отличаются от условий применения масел в поршневых компрессорах. Следовательно, для проведения цикла работ по определению нагарообразующих свойств масел в условиях поршневых воздушных компрессоров необходимо использовать полноразмерные компрессорные машины или специальные установки, которые могли бы воспроизвести реальные условия применения масел в компрессорах. [c.300]


    Первые попытки в этом направлении были сделаны проф. В. А. Константиновым, опубликовавшим [1, 2] метод построения и расчета термодинамических схем рабочего цикла поршневых двигателей внутреннего сгорания с учетом длительности процесса сгорания. Схема В. А. Константинова для двигателей с принудительным зажиганием показана на рис. 4. Согласно этой схеме, вызванное сгоранием нарастание давлении начинается в верхней мертвой точке. На протяжении процесса сгорания давление в координатах Р — V изменяется по закону непрерывной прямой линии Р = а ЬУ (рис. 4). [c.106]

    ЦИКЛЫ ПОРШНЕВЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ [c.67]

    Цетановое число-основной показатель воспламеняемости топлива в поршневом двигателе внутреннего сгорания, работающем по циклу Дизеля. [c.88]

    Авиационные и автомобильные поршневые двигатели внутреннего сгорания с принудительным воспламенением от искры-работают по четырехтактному циклу. [c.83]

    Авиационные и автомобильные поршневые двигатели внутреннего сгорания с принудительным воспламенением от искры работают по четырехтактному циклу. В первом такте (всасывание) топливно-воздушная рабочая смесь заполняет цилиндр двигателя и нагревается к концу такта в двигателях, работающих на бензине, до 80—130°С и до 140—205 °С — в работающих на керосине. [c.86]

    Поршневой двигатель внутреннего сгорания (рис. 1.1) состоит из картера (1), цилиндра (2), впускного (3) и выпускного (4) клапанов, крышки (головки цилиндра (5)), поршня (6), шатуна (7) и коленчатого вала (8). Пространство, ограниченное стенками цилиндра, поршня и головки является камерой сгорания. В камеру сгорания вводится топливо и воздух, они сжимаются поршнем и затем топливо сгорает. В результате повышения температуры при горении давление газов, образующихся в результате сгорания топлива (в основном N2, СО2, Н2О) повышается (Р Т) и давление газов движет поршень, поступательное движение поршня через шатун передается на коленчатый вал и преобразуется во вращательное. Двигатели внутреннего сгорания работают при периодическом сжигании топлива. После стадии сгорания, при которой совершается работа, происходит удаление газов из рабочего пространства двигателя, наполнение его топливовоздушной рабочей смесью и сжатие смеси. Наиболее распространены двигатели с повторяющимся рабочим циклом, которые состоят из четырех стадий - впуск рабочей смеси, сжатие рабочей смеси и сгорание (рабочий ход), выпуск отработавших газов. Полный цикл совершается за два поворота коленчатого вала, при этом полезная работа совершается за пол-оборота вала, остальные стадии (такты) требуют затрат энергии. Стабильная равномерная работа двигателя обеспечивается наличием в двигателе нескольких цилиндров, соединенных шатунами с коленчатым валом так, что вал вращается при рабочем такте, происходящем поочередно в разных цилиндрах. [c.5]


    Рабочий цикл двигателя с искровым зажиганием, как и всех двигателей внутреннего сгорания, слагается из процессов испарения, смесеобразования, воспламенения и сгорания топлива. При сгорании топлива вьщеляется тепловая энергия, которая преобразуется двигателем в механическую работу. Горючая смесь в поршневых двигателях с искровым зажиганием образуется либо в специальном приборе -карбюраторе, либо непосредственно в цилиндре двигателя, куда воздух и топливо поступают раздельно. [c.90]

    В этом высказывании Рэлей говорит о возможности возбуждения акустических колебаний за счет энергии теплоподвода. Описанный им процесс является широко известным из термодинамики способом получения механической энергии за счет подводимого тепла путем совершения рабочим телом некоторого термодинамического цикла. Подобные процессы лежат в основе всех поршневых двигателей внутреннего сгорания. Совершенно очевидно, что тепло может перейти в акустическую энергию лишь таким путем, поскольку акустическая энергия есть разпо 511Дность механической, а не тепдовой энергии. Рэлей подчеркивает это, говоря несколько выше Почти во всех случаях, где телу сообщают тепло, происходит расширение, и его можно заставить совершать механическую работу ). [c.76]

    ДВИГАТЕЛИ С ВОСПЛАМЕНЕНИЕМ ОТ СЖАТИЯ (дизели) -поршневые двигатели внутреннего сгорания, в цилиндре к-рых сжимается воздух, а топливо, впрыскиваемое в конце сжатия, воспламеняется вследствие высокой т-ры сжатого воздуха. Работают по циклу Дизеля или Са-батэ с четырехтактным или двухтактным рабочим процессом (см. Двухтактные судовые двигатели) с использованием в за-висимоии от числа оборотов, конструктивных особенностей и условий применения легкого ди-стиллятнсго или тяжелого остаточного топлива. [c.172]

    Особым видом горения углеводородов нефти является горение ее дистиллатных продуктов (моторных топлив) в поршневых двигателях внутреннего сгорания. Такой процесс высокотемператур ного окисления газожидкостной фазы переменного состава протекает в условиях резких и быстрых изменений температуры и давления в цикле, что создает трудности его изучения. [c.3]

    Развитие и эксплуатация поршневых двигателей внутреннего сгорания имеет унле почти вековую историю, однако только недавно сотрудниками Института химической физики АН СССР выяснена природа этого автоматизма. Исследования движения газа в цилиндре двигателя с помощью электротермоанемометра привели к выводу, что турбулентность в цилиндре двигателя рождается в процессе его наполнения, в ходе всасывания. Этот вывод подтверждается, например, тем, что при перекрытии всасывающего клапана в каком-либо цикле, т. е. пропуске наполнения цилиндра, турбулентные пульсации почти полностью исчезают. Это видно из осциллограмм термоанемометра, отображающих последовательные циклы работы двигателя с нормально работающим и с закрытым всасывающим клапаном (рис. 15). Чем больше число оборотов, чем выше скорость движения поршня, тем больше скорость всасывания газа и его скорость в струях, втекающих в цилиндр в ходе всасывания. А со скоростью воздугпных струй возрастает интенсивность рождаемых в них турбулентных пульсаций. [c.151]

    Авиационные, автомобильные и тракторные поршневые двигатели внутреннего сгорания с принудительным воспламенением от искры работают по четырехтактному циклу. В первом такте— всасывание — топливно-воздушная рабочая смесь заполняет цилиндр двигателя и нагревается к концу такта в двигателях, рабо-таюш,их на бензине до 80—130° С, и до 140—205° С в керосиновых двигателях. Во втором такте — сжатие—давление смеси возрастает до 10—12 бар, а температура—до 150—350°С. В конце хода сжатия с некоторым опережением смесь воспламеняется от электрической искры. Хотя время сгорания топлива очень мало — тысячные доли секунды, но оно все же сгорает постепенно, по мере продвижения фронта пламени по камере сгорания. Фронтом пламени называется тонкий слой газа, в котором протекает реакция горения. При нормальном сгорании фронт пламени распространяется со скоростью 20—30 м1сек. Температура сгорания достигает 2200—2800° С, а давление газов сравнительно плавно возрастает до 30—50 бар в автомобильных двигателях и до 80 бар в авиационных. В третьем такте (рабочий ход) реализуется энергия сжатых продуктов сгорания и во время четвертого такта цилиндр двигателя освобождается от продуктов сгорания. [c.87]

    Главной задачей термодинамики XIX в. было создание точной и полной теории действия тепловых машин, такой теории, которая могла бы служить основой для проектирования паровых поршневых машин, двигателей внутреннего сгорания, паровых турбин, холодильных машин и т. д. и которая указывала бы научно обоснованные пути усовершенствования этих машин. В связи с этим детальное развитие в XIX в. получила термодинамика газов и паров. Основным методом термодинамики XIX в. был метод круговых про-дессов. Главным содержанием термодинамики XIX в. было 1) исследование различных циклов с точки зрения их коэффициента полезного действия 2) изучение свойств газов и паров 3) разработка и создание термодинамических диаграмм, столь важных для практических расчетов в области теплотехники. С этим направлением исследований связаны имена самих основателей термодинамики Сади Карно, Клапейрона, Роберта Майера, Томсона, Клаузиуса и затем Ренкина, Гирна, Цейнера, Линде и в XX в.—Молье, Шюле, Календера. [c.7]



Смотреть страницы где упоминается термин Циклы поршневых двигателей внутреннего сгорания: [c.146]   
Смотреть главы в:

Основы химической термодинамики и кинетики химических реакций -> Циклы поршневых двигателей внутреннего сгорания




ПОИСК





Смотрите так же термины и статьи:

Цикл двигателя



© 2024 chem21.info Реклама на сайте