Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие методы формования полиамидных волокон

    Другие методы формования полиамидного волокна [c.331]

    Полиамидные волокна, за исключением волокон специальных типов (термостойкие, структурированные), -формуются из расплава полимеров. Другие методы формования из растворов, дисперсий полимеров, межфазным способом —до сих пор не получили. практического применения. [c.109]

    В 1938—1939 гг. после длительного процесса исследований начинается промышленное производство полиамидного волокна найлон. Для производства этого волокна, обладающего рядом новых, ценных свойств, потребовалось разработать принципиально новый метод формования — не из растворов, а из расплава. Волокно найлон нашло широкое применение во многих отраслях техники и для выработки предметов народного потребления. Производство его получило большое развитие сначала в США, а затем и в других странах. [c.10]


    Для обеспечения бесперебойности процесса формования на описанной в предыдущем разделе прядильной машине с плавильной решеткой необходимо соблюдать ряд условий, которые будут подробно изложены в следующих разделах. Кроме этих общих правил проведения технологического процесса, обусловленных свойствами полиамидов, особенностями процесса формования из расплава при применении одинаковой в принципе конструкции прядильных машин, в ряде случаев возможны некоторые отклонения, связанные с особенностями конструкции отдельных частей машины, выбранной схемой проведения процесса формования (простые, двойные или счетверенные прядильные места) или с предварительной подготовкой полиамидной крошки, используемой для формования волокна. Некоторые различия в свойствах, качестве и прочности получаемого полиамидного шелка требуют применения при формовании особых приспособлений и приемов. Мнения о целесообразности того или другого приема при формовании волокна расходятся. Это не удивительно, если учесть, что метод формования из расплава применятся сравнительно недавно. Однако и в этом случае справедливо основное положение, относящееся к формованию всех видов химических волокон и заключающееся в том, что все многообразие свойств волокна — его достоинства и недостатки — определяются в известной степени правильным или неправильным проведением процесса формования. [c.310]

    Высокая производительность труда может быть достигнута при совмещении формования волокна и его последующей обработки в одном непрерывном процессе (см. схемы 15—18). Одна из схем технологического процесса (15) уже была описана в разделе 5.1.4. Она не может быть использована в промышленной практике из-за невысокого качества волокна, получаемого по этой схеме. Согласно имеющимся данным, применение технологических операций в последовательности, описываемой схемами 16 и 17, не вышло за пределы опытно-промышленных исследований. И наоборот, технологическая схема 18, по-видимому, с успехом применяется на практике [27]. Производительность труда при работе по этой схеме возрастает в 3—4 раза по сравнению с существующими схемами технологического процесса (имеется в виду, очевидно, схема 6). Соединение формования, вытягивания и резки волокна в непрерывном процессе позволяет также, согласно опубликованным данным, уменьшить капитальные затраты на 20—25%. Таковы перспективы этого метода, которые, несомненно, будут реализованы в СССР. Учитывая объем производства полиамидного волокна в Советском Союзе, можно ожидать, что указанная схема будет использована вначале для получения одного типа волокна, а именно волокна типа шерсти для переработки по аппаратной системе прядения в смеси с другими волокнами. Результаты проводимых в настоящее время исследований позволят вскоре дать ответ на ряд вопросов, которые относятся к этому интересному технологическому процессу, в частности возможна ли переработка резаного штапельного волокна в хлопкопрядении, где к волокну предъявляются более высокие требования. Возможно ли формование полого профилированного волокна. Может ли волокно выдержать давление в несколько атмосфер, развиваемое транспортирующим воздухом, и высокие скорости прохождения через циклон и воздуходувку без закручивания и спутывания волоконец, ухудшающих условия последующей переработки волокна Возможна ли замена обычно применяемого метода механической гофрировки комбинацией двух отделочных операций — обработки горячей водой и запаривания  [c.610]


    Если до 1940 г. выпускались только вискозные, медноаммиачные и ацетатные волокна, то в настоящее время в больших количествах производится более 10 видов химических волокон. Среди них такие широко известные волокна, как полиамидные, полиэфирные, полиакрилонитрильные, полипропиленовые и другие. Благодаря использованию новых методов формования, вытягивания, термообработки и модификации в последние годы значительно увеличился также ассортимент волокон каждого вида. [c.7]

    Как уже указывалось выше, наибольшее применение получили полиамидные волокна. Это объясняется присущими им ценными свойствами, широкой сырьевой базой для их производства и в значительной степени тем, что методы получения исходных материалов, а также процессы формования и последующей обработки разработаны для полиамидных волокон раньше и более детально, чем для других гетероцепных волокон. [c.18]

    Гетероцепные волокна — основной класс синтетических волокон, получивший наиболее широкое распространение. В промышленных масштабах вырабатываются в основном два вида гетероцепных волокон — полиамидные и полиэфирные — и в небольших количествах высокоэластичное полиуретановое волокно. Наибольшее распространение в предыдущие годы получили полиамидные волокна. Это объяснялось присущими им ценными свойствами, широкой сырьевой базой для их производства и в значительной степени тем, что методы получения исходных материалов а также процессы формования и последующей обработки разработаны для полиамидных волокон раньше и более детально, чем для других гетероцепных волокон. [c.15]

    Химическая модификация полиамидных волокон методами прививок также не нашла широкого применения, так как формование волокон из сополимеров представляет широкие возможности изменения свойств волокна. По той же причине до сих пор не нашли применения методы прививки стирола и других виниловых мономеров к полиэфирным волокнам. [c.367]

    Другим принципиально возмож ным методом получения термостойких полиамидных и полиэфирных волокон является формование волокна на границе раздела фаз. Синтез гетероцепных полимеров путем поликонденсации на границе раздела фаз в последнее время широко использовался для получения различных термостойких поли.меров . Если бы удалось использовать этот принцип для синтеза полимеров, получаемых из мономеров непосредственно в виде волокон при нормальной температуре, то принципиально отпадают все ограничения в отношении температуры плавления полимеров. [c.114]

    Скорость формования полиамидных волокон нз расплава примерно в десять раз превышает скорости, обычно применяемые при формовании искусственных волокон ). Это, несомненно, является существенным преимуществом метода формования из расплава. В зависимости от тонины волокна можно проводить формование из расплава со скоростью 450—1200 м1мин. Однако высокие скорости формования требуют исключительной точности всех движущихся частей прядильной машины. Например, неровный ход прядильного диска или бобины может оказать существенное отрицательное влияние на качество получаемой нити. Ранее привод всех однотипных элементов конструкции намоточной части прядильной машины с плавильной решеткой, расположенных рядом друг с другом, осуществлялся от продольных валов, причем привод к прядильным дискам осуществлялся путем конической передачи. Однако многочисленные приводные системы и подшипники при работе на скоростях вращения, превышающих 3000 об/мин, быстро изнашиваются, что приводит к увеличению эксплуатационных расходов и сравнительно высокой стоимости машины. Чтобы уменьшить возможность колебаний и обеспечить устойчивую работу различных валов механического привода, имеющих значительную длину [40], необходима была достаточно устойчивая конструкция прядильной машины. [c.341]

    Полиамидные волокна могут быть получены и по непрерывной схеме. При реализации этого технически прогрессивного метода значительно упрощается технологический процесс п его аппаратурное оформление (см. стр. 73). При непрерывном производстве поликапролактама и волокон типа капрон отпадают операции 3—7, при непрерывном получении волокон типа анид и энант — операции 3—5. Непрерывный процесс, включащий синтез полиамида и формование из него волокна, можно наиболее просто осуществить при получении волокна энант. Однако этот метод может и должен быть реализован и при получении других полиамидных волокон. [c.23]

    Другим прннцпииальио возможным методом получения термостойких полиамидных п полиэфирных волокон является формование волокна на границе раздела фаз. Синтез гетероцепных полимеров путем нолпкондонсацип на границе ра здола фаз в последнее время широко пспо.1ь-зовался для получения различных термостойких полимеров Если бы [c.114]



Смотреть страницы где упоминается термин Другие методы формования полиамидных волокон: [c.23]    [c.20]   
Смотреть главы в:

Синтактические полиамидные волокна технология и химия -> Другие методы формования полиамидных волокон

Полиамидные волокна -> Другие методы формования полиамидных волокон




ПОИСК





Смотрите так же термины и статьи:

Другие волокна

Другие методы

Полиамидные волокна

Формование волокна

Формование методы



© 2024 chem21.info Реклама на сайте