Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Достижения белковой инженерии

    Крупные открытия в науке обычно делаются при разработке фундаментальных проблем. Мы разделяем мнение большинства врачей о том, что последние достижения биотехнологии, нашедшие применение в самых важных отраслях медицины, оказывают и будут оказывать революционизирующее воздействие на диагностику, лечение и понимание основ патологии многих тяжелых заболеваний. Ориентируясь на читателей, не имеющих медицинской подготовки, мы расскажем о том, какую важную роль играют в клинической практике некоторые новые подходы, а также широко используемые методы диагностики. Мы по необходимости ограничимся лишь немногими примерами, но читатель может без труда дополнить их множеством других использованием в терапии белков, которые можно синтезировать при помощи видоизмененных методами генетической инженерии микроорганизмов, применением моноклональных антител, ферментов и т. д. Мы не обсуждаем использующиеся при этом технологические процессы сколько-нибудь подробно (о них речь идет в других главах) исключение составляет лишь раздел о синтезе инсулина человека дело в том, что инсулин был первым белком, полученным с помощью технологии рекомбинантных ДНК и испытанным на людях, а также первым или одним из первых) препаратом такого рода, нашедшим применение в клинике. [c.325]


    Современные достижения генной инженерии. Изучение механизмов передачи генов у бактерий и участия в этом процессе внехромосомных элементов открыло возможность включения чужеродной ДНК в бактериальные клетки. Генетические манипуляции позволяют вносить небольшие отрезки носителей генетической информации высших организмов, например человека, в бактерию и заставлять ее синтезировать соответствующие белки. Вполне осуществимо производство гормонов антигенов, антител и других белков с помощью бактерий. Делаются также попытки передать растениям способность к азотфиксации и лечить болезни, связанные с биохимическими дефектами. [c.19]

    Потенциальные возможности генной инженерии растений весьма велики, особенно в сочетании с традиционными методами селекции (а без них и в генной инженерии не обходятся). Но мы столько раз, особенно в XX в., испытали на себе негативные последствия технических достижений, что невольно начинаем дуть на воду не несет ли генно-инженерный синтез невиданных форм жизни опасности для человека Сам процесс создания таких организмов, особенно используемых в пищу, безусловно, гораздо менее опасен, чем химический синтез многих лекарств. Во-первых, потому что генная инженерия основана на природном явлении, благополучно протекавшем 3 млрд лет без нашего участия. Во-вторых, потому что обеспечить необходимую для употребления в пиш у чистоту продуктов абиогенного синтеза — сложная химическая задача. В-третьих, жизнь, как известно со времен Л. Пастера, для построения белков и нуклеиновых кислот использует только левые изомеры аминокислот (мономеры белков) и правые изомеры нуклеотидов (мономеры нуклеиновых кислот). Противоположные изомеры вредны для всего живого. При абиогенном синтезе выход левых и правых изомеров одинаков. Их разделение в промышленных условиях требует немалых затрат. Все же, что делают для нас другие живые существа, в этом аспекте для нас безвредно. [c.95]

    Наиб, крупные достижения М. б. расшифровка структуры белков и нуклеиновых к-т (М. Перутц, Дж. Кевдрю, Дж. Уотсон, Ф. Крик, У. Гилберт) создание адапторной теории белкового синтеза (Ф. Крик) и теории регуляции синтеза белков в бактериях (Ф. Жакоб, Ж. Моно) открытие транспортной и матричной РНК, расшифровка генетич. кода (М. Ниренберг, G. Очоа) открытие обратной транскрипции (X. Темин, Д. Балтимор), прерывистой структуры генов и механизма созревания матричных РНК у эукариот развитие методов генной инженерии (П. Берг, [c.347]


    При отборе материала для четвертого издания учебника учитывалось, как и ранее, значение определенных разделов биохимии для формирования отчетливых представлений по общей биохимии, а также то, что развитие самой биохимии в отдельных ее частях идет неравномерно за последнее время произошли огромные сдвиги в изучении строения и обмена некоторых групп органических соединений. Поэтому в книге уделено много внимания строению белков, нуклеиновых кислот и ферментов, рассмотрены особенности белковых тел как носителей жизни, обращено внимание на принцип комплементарности в строении нуклеиновых кислот и его значение в матричном биосинтезе природных полимеров, изложены современные представления о биологическом окислений, регуляции обмена веществ и взаимосвязи обмена соединений различных классов. Там, где это уместно, освещены вопросы использования достижений биохимии в развитии новых направлений в биологических науках (химическая систематика, молекулярные основы наследственности, изменчивости и эволюции и др.), медицине (наследственные болезни, биохимическая диагностика, стратегия химиотерапии, взаимодействие вирусов и клеток и т. п.), сельском хозяйстве (биохимическая паспортизация генетического фонда, экологическая биохимия, клеточная инженерия и др.) и промышленном производстве (инженерная энзимология, техническая биохимия, фармацевтическая химия, микробиологический синтез и т. п.). [c.3]

    В последние 20 лет были достигнуты большие успехи в понимании того, каким путем генетическая информация через матричную РНК воплощается в молекулу белка кроме того, высокий уровень развития получили представления об основах регуляции экспрессии генов в прокариотических клетках. К сожалению, до недавнего времени все важнейшие сведения о молекулярных механизмах регуляции ограничивались данными, полученными при изучении прокариотических и простейших эукариотических организмов. Это объясняется тем, что использованные методы генетического анализа эффективны лишь в применении к наиболее примитивным организмам. Последние достижения генной инженерии позволили начать изучение сложнейших механизмов регуляции экспрессии генов у млекопитающих. В этой главе мы сначала обсудим то, что характерно для прокариотических систем. При этом мы не будем описывать генетические эксперименты, а сделаем акцент на том, что может быть названо физиологией экспрессии генов. Однако нужно подчеркнуть, что почти все важнейшие выводы основаны на результатах генетических исследований. [c.110]

    У белковой инженерии большое будущее. Но даже достижения сегодняшнего дня в данной области весьма значительны. Мы являемся свидетелями активного использования белков и ферментов для крупномасштабного тонкого химического синтеза, эффективного разделения рацемических смесей энантио-меров, в качестве биосенсоров, лекарственных средств при заместительной терапии многих заболеваний человека, для получения пищевых продуктов, детергентов и эффективных моющих средств. Все это требует проведения поиска еще более эффективных биокатализаторов, в том числе и создания искусственных измененных ферментов методами белковой инженерии. Наш краткий обзор не ставит задачи дать исчерпывающую картину полученных результатов, и основной акцент делается на использовании генно-инженерных методов при конструировании белков с новыми свойствами. Однако было бы несправедливым умолчать о химических подходах получения биокатализаторов с новыми свойствами, активно применяемых в современной биотехнологии. [c.369]

    Достижения практической микробиологии (биотехнологии) тесно связаны с генной инженерией синтез ферментов, расщепляющих целлюлозу до моносахаридов, получение фиброина - основного белка шелка, производство стиральных порошков с ферментными добавками, получение красителя индиго, основанное на том, что кишечная палочка образует большие количества триптофана, а внедренный в кишечную палочку фермент окисляет триптофан до индиго. [c.63]

    Новейшим достижением в биотехнологии явилось создание технологии рекомбинантных ДНК, или генной инженерии. Эта область объединяет химию нуклеиновых кислот и белков, микробиологию, генетику и биохимию. Первой задачей генной инженерии является выделение и идентификация генетического материала (ДНК) из одного организма. Далее этот материал модифицируется с тем, чтобы его можно было ввести в новый организм-хозяин . При воспроизведении генетического материала хозяина введенная ДНК также воспроизводится. [c.117]

    Во многих научных лабораториях проводится селекционно-генетическая работа по улучшению аминокислотного состава белков зерна ячменя на основе скрещиваний с высоколизиновыми формами Хайпроли и Ризо 1508, осуществляется также поиск генетических источников высокого содержания белка с улучшенным аминокислотным составом для пшеницы, тритикале и других зерновых культур. Особые надежды возлагаются на новые методы создания ценных генотипов сельскохозяйственных растений, основанные на использовании достижений генетической н клеточной инженерии. [c.259]


    В дальнейшем можно ожидать, что ультрафильтрация найдет применение в такой важной области, как ферментация, для выделения и очистки белков и других продуктов, получаемых с помощью новых биотехнологических процессов (генная инженерия). Лимитирующей стадией в практическом развитии генной инженерии будет, возможно, не сам процесс манипулиро-эания генами, а крупномасштабное и рентабельное производство биологически активных веществ на основе достижений генной инженерии. При этом ультрафильтрация и (в меньшей степени) обратный осмос найдут широкое применение в биотехнологии, что, возможно, послужит стимулом для разработки новых типов мембран и новых процессов, основанных на мембранных методах. [c.378]

    ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ (ленная инженерия), создание с помощью биохим. и (или) хим. синтеза генетач. структур, способных размножаться и действовать в клетке-хозяине, изменять ее генетич. программу и синтезировать требуемые продукты, обычно белки. Возникла в 1972, когда была получена первая такая структура. Будучи новым этапом развития молекулярной генетики, Г. и. использует достижения микробиологии, биохимии, биоорг. химии и молекулярной биологии. [c.518]

    Использование трансгенных растений. Это новое направление в защите растений от вредителей и болезней. Оно основано на достижениях современной генной инженерии, способной конструировать растения с полезными для человека свойствами. В настоящее время в мировой практике на миллионах гектарах возделывают трансгенные растения картофеля, не повреждаемые колорадским жуком. Такое невосприятие картофеля колорадским жуком объясняется тем, что в геном картофеля встроен участок ДНК бактерии Ba illus thuringiensis, ответственный за синтез белков, токсичных для вредителя. Создание и культивирование трансгенных растений внесет существенные изменения в традиционные методы защиты растений. [c.135]

    В последние пять лет были получены многие важные результаты в связи с чем неуклонно возрастала вера в то, что проблема укладки белковой молекулы будет решена уже в ближайшем будуш,ем. В настоящем обзоре оказалось невозможным обсудить в полном объеме перспективы указанной проблемы выскажем лишь некоторые соображения на этот счет. Необходимо заметить, что не все исследователи придерживаются одной точки зрения относительно главного направления предстоящих исследований. Например, Левитт и Шерага считают, что для успешного моделирования пространственной укладки белка весьма полезно использовать экспериментальные сведения о конформационных возможностях объекта. Очень информативны в этом отношении данные ЯМР, из которых легко можно получить многие межатомные расстояния в молекулах белков. В этом случае проблема заключается в том, чтобы обойтись минимумом экспериментальных сведений для достижения результата. Ясно также, что с развитием теории таких сведений будет требоваться все меньше и меньше. Во-вторых, в лаборатории автора было показано, что метод предсказания третичной структуры полностью применим к минибелкам , т. е. биологическим пептидам, содержащим до десяти аминокислотных остатков. Качество предсказания для белков длиной 100—200 остатков должно находиться в соответствии с назначением результата. Например, было показано, что достаточно приближенные расчеты вполне применимы для целей конструирования искусственных пептидных вакцин, которые после присоединения к молекуле-носителю приобретают имму-ногенные свойства и начинают производить антитела против изучаемого пептида. Можно надеяться также, что предварительное моделирование пространственной структуры задолго до получения исчерпывающих кристаллографических данных об объектах окажется полезным в биотехнологических исследованиях. Поэтому появление все большего числа работ, по-священных белкам с неизвестной третичной структурой, представляет гораздо больший интерес по сравнению с академическими, методическими работами, касающимися бе лков с уже имеющимися подробными данными о конформации. Фармакологов, нейрохимиков, иммунологов и генных инженеров как раз весьма мало интересуют расчеты белков с хорошо известной из эксперимента пространственной структурой для этих групп ученых крайне важны предсказательные расчеты белков, которые ими изучаются. [c.599]

    Разработка методов получения в неограниченных количествах mAb заданной специфичности еще больше расширила область применения этих белков. В свою очередь, само появление моноклональных антител (mAb) стимулировало исследователей к применению методов белковой инженерии для направленного изменения исходных макромолекул, что привело к созданию целой группы белков с совершенно новыми свойствами. Получение абзимов, т.е. антител, обладающих ферментативной активностью, явилось одним из самых неожиданных открытий в этой области исследований. Достижения в конструировании антител и их производных хорошо иллюстрируют возможности современной белковой инженерии. [c.403]


Смотреть страницы где упоминается термин Достижения белковой инженерии: [c.347]    [c.496]    [c.338]    [c.375]    [c.6]   
Смотреть главы в:

Искусственные генетические системы Т.1 -> Достижения белковой инженерии




ПОИСК





Смотрите так же термины и статьи:

Инженерия белка



© 2025 chem21.info Реклама на сайте