Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фермент изменение структуры методом

    Поразительная специфичность действия ферментов привела к созданию теории замка и ключа, согласно которой для протекания реакции необходимо точное структурное соответствие между субстратом и активным центром фермента. Проведенные эксперименты убедительно доказали адекватность этой идеи, однако сама теория претерпела существенное изменение. Считается, что если фермент — это замок , а субстрат — ключ , то введение ключа в замок часто индуцирует конформационные изменения в молекуле белка. Имеется множество работ, в которых показано, что фермент укладывается вокруг субстрата, обеспечивая более точное соответствие подгоняемых структур. В пользу этого говорят данные по изменению спектров кругового дихроизма, спектров поглощения в УФ-области и констант седиментации, а также результаты исследования структуры комплексов ферментов с ингибиторами методом рентгеноструктурного анализа. Как мы уже видели ранее (гл. 4, разд. Д, I), идея индуцированного соответствия оказывается весьма плодотворной и при обсуждении взаимодействий субъединиц. [c.42]


    Структура углеводных цепей групповых веществ крови изучалась иммунологическими методами для определения изменения серологической активности при кислотном гидролизе или обработке специфическими ферментами. Были определены терминальные углеводные остатки, ответственные за иммунологическую специфичность. С помощью щелочной деградации показано, что оли- [c.272]

    Тонкие различия в первичной структуре родственных белков часто удается выявить методом отпечатков пальцев . Метод этот состоит в том, что белок подвергают частичному перевариванию с помощью одного или нескольких протеолитических ферментов, а затем разделяют продукты гидролиза и идентифицируют их, пользуясь для этого либо электрофорезом, либо хроматографией на бумаге. На фиг. 32 приведены полученные таким способом отпечатки пальцев , или пептидные карты , нормального и аномального гемоглобинов. Детальное изучение этих пептидных карт показывает, что все пептидные пятна, за исключением одного, идентичны. Таким способом генетически измененный структурный элемент выявляется очень легко, и для установления природы структурного изменения нет надобности устанавливать полную аминокислотную последовательность всей молекулы. Действительно, в ряде случаев весьма определенные указания относительно природы имеющегося замещения можно получить просто исходя из результатов анализа аминокислотного состава соответствующих пептидов, выделенных из двух белков. Но, конечно, однозначные доказательства замены одной аминокислоты на другую получают только после установления аминокислотной последовательности анализируемых пептидов. [c.96]

    В последние годы в активе молекулярной биологии появились методы и подходы, основанные на использовании новых молекулярных датчиков — стабильных нитроксильных радикалов, связанных ковалентно с макромолекулами (спиновые метки) или введенных в качестве ничтожных примесей в исследуемую систему (спиновые зонды). Вращательная и трансляционная подвижность таких радикалов, измеренная с помощью техники электронного парамагнитного резонанса, дает информацию о структуре, кон-, формационной динамике, микрорельефе и топологии белков, ферментов, мембран и других биомолекул и биологических структурных элементов. Спиновые метки служат своеобразными сейсмическими станциями, чутко регистрирующими малейшие изменения биологических структур при их функционировании или при различных воздействиях на них. [c.3]


    В частности, методами белковой инженерии, сущность которых состоит в изменении первичной структуры природной молекулы фермента посредством химической модификации самого энзима или его гена, удается принципиально трансформировать структуру активного центра и его функцию, модулировать субстратную специфичность и физико-химические свойства фермен- [c.84]

    В предыдущих разделах были кратко рассмотрены причины значительно более поверхностного описания деталей стереохимии при рентгеноструктурном анализе белков по сравнению с описанием малых низкомолекулярных соединений. Однако для успешного исследования зависимости между структурой и активностью требуется более высокая точность структурных данных. Поскольку мы стремимся к более глубокому пониманию поведения активного центра или функциональных областей этих биологических макромолекул, необходимо повысить разрешающую способность дифракционных методов. Малые изменения конфигурации аминокислотных остатков в области центра связывания металла и изменения стереохимии комплексов металла в ходе каталитического процесса должны быть тщательно изучены, в особенности при исследовании ферментов, требующих участия иона металла. Как указывалось в разд. 1.2.1, описание этих структурных изменений позволяет определить стереохимическую природу электронных перестроек, происходящих при взаимодействии молекул субстрата и фермента и ответственных за каталитическое действие. [c.24]

    В, С и В. Термин адаптация уже с давних пор имеет совершенно оиределенный биологический смысл, обозначая такие изменения структуры или функции, которые улучшают приспособленность клетки к новым условиям. Правда, индукцию ферментов можно вызвать и соединениями, не являющимися метаболитами, и в этом случае приспособляемость организма ухудшается, поскольку синтезируются белки, в которых клетка в данный момент не нуждается. Тем не менее, несмотря на эти исключения, у бактерий, как правило, в значительных количествах синтезируются только те ферменты, которые клетка использует для расщепления соответствующего метаболита. Поскольку в результате клетка оказывается более приспособленной к новому окружению, нам кажется, что термин одновременная адаптация адекватно описывает метод, изучающий эту ферментативную перестройку. [c.31]

    В связи с экспрессией генов большое значение приобретает "белковая инженерия", дорожку которой проторила генетическая инженерия, первая вытекает из второй и, следовательно, белковая инженерия также является методом науки "Биологическая технология" Целевые установки здесь сводятся к изучению и пониманию главного звена в структуре ферментов (почему они функционируют так, а не иначе ), к возможности научиться видоизменять природные белки или, того больше, уметь их заново проектировать, к выяснению причин и механизмов изменения фенотипа под влиянием генотипа [c.211]

    В настоящее время в очистке белков, как и во всех других областях белковой химии, произошли огромные изменения. Разработаны методы большой эффективности и универсальности, и задача разделения белков утратила в значительной мере свою исключительность. Выделение новых ферментов превращается в банальную операцию. Все это результат разработки методов хроматографии и препаративного электрофореза. Хроматография — несомненно самый избирательный п общий метод разделения близких веществ — долгое время не могла применяться в должной степени к белкам вследствие трудностей, связанных с денатурацией. При хроматографии акты сорбции и десорбции повторяются сотни раз. Поэтому необходима полная идеальная обратимость процесса сорбции—десорбции. Однако белки благодаря своеобразию структуры частично денатурировались прп сорбции на ионообменных смолах и потому становились нерастворимыми и не могли хроматографироваться. [c.130]

    В результате связывания с ферментом химическая структура вещества мол<ет изменяться (каталитическая реакция). Связывание с рецептором не приводит к изменению структуры вещества. Перечисленные особенности лел ат в основе существующих ныне методов изучения взаимодействия веществ с рецепторами. [c.133]

    Это отнюдь не новая область. Выпекать хлеб и сбраживать сусло люди научились тысячи лет назад. Процессы ферментации, разделения и очистки давно и хорошо известны. Но с появлением сведений о молекулярной структуре и основных аспектах химии генетического материала в биотехнологии началась новая эра. (см. разд. Ш-Е). Она ознаменовалась разработкой процедур сращивания генов, позволяющих химикам использовать бактерии для производства сложных биологически активных молекул. Были найдены ферменты, способные разрывать цепи ДНК в нужных местах и вводить в них чужеродную ДНК с новыми химическими связями. Модифицированная ДНК вырабатывает белки в соответствии с заложенным в нее измененным кодом. Этими белковыми продуктами могут быть гормоны, антитела или другие нужные нам сложные химические соединения со специфическими свойствами и функциями. Вырабатываемый бактериями с внедренным геном человека интерферон, по-видимому, окажется ценным средством лечения целого ряда болезней. Уже появился на рынке инсулин человека, производимый методом сращивания генов. Активность в этой области высока, и коммерческие предприятия возникают быстро. [c.130]


    Предположим, например, что при расщеплении субстрата АВ фермент смещает электронную плотность по направлению от А к В. Эту гипотезу можно проверить, измеряя константы скорости ферментативного расщепления для ряда субстратов А В, где А — остатки различной электроотрицательности. Если специфичность фермента не позволяет варьировать структуру А, аналогичное исследование можно провести, варьируя структуру В. При этом, разумеется, необходимо располагать способом определения индивидуальной константы скорости для стадии расщепления данной связи в молекуле субстрата. Описанный метод находит весьма широкое применение. Он непригоден только в тех случаях, когда стадией, лимитирующей максимальную скорость процесса, являются конформационные изменения фермента или отщепление продукта реакции, а не перераспределение электронов в субстрате или его комплексах. [c.192]

    Какова структура активных центров Благодаря кристаллографическим исследованиям мы можем неиосредственно увидеть , как устроено все большее и большее их число. Однако рентгеноструктурный анализ обычно не позволяет получить четкого представления о конформацион-ных изменениях, обеспечиваюш их индуцированное соответствие. Кроме того, кристаллографические исследования с высоким разрешением проведены лишь для относительно небольшого числа ферментов. Поэтому для выяснения структуры активного центра энзимологи продолжают широко использовать традиционные химические методы картирования , измеряя константы связывания ингибиторов, структуру которых последовательно изменяют, и исследуя, как влияют изменения структуры субстратов на связывание и скорость реакции. Хорошим примером исследования такого рода может служить работа Мейстера (Meister) и его сотрудников, исследовавших глутаминсинтетазу из мозга овцы. Субстратами фермента являются как D- и L-глутаминовая кислоты, так и а-аминоадипиновая кислота. В то же время из десяти монометильных производных D- и L-глутаминовой кислот субстратами глутаминсинте-тазы могут служить только три. Если допустить, что субстраты связываются в полностью вытянутой конформации, то все атомы водорода, замена которых не приводит к исчезновению активности, лежат с одной стороны остова молекулы (за плоскостью рисунка на следующих двух схемах)  [c.43]

    Другой пример сильного взаимодействия белка с ДНК—регуляция оперона белком-репрессором. Наиболее изученным примером является 1ас-оперон Е. соИ [25]. Ген-регулятор кодирует синтез белка 1ас-репрессора, который затем связывается с соседним оператором. Связывание с белком-репрессором малой молекулы— индуктора, например изопропилтио-р- )-галактопиранозида, вызывает диссоциацию репрессора с операторного участка. Последующая транскрипция трех соседних генов оперона приводит к биосинтезу трех ферментов — Р-галактозидазы, галактозопермеазы и тиогалактозидтрансацетилазы. 1ас-Репрессор представляет собой тетрамерный белок, состоящий из идентичных субъединиц по 347 аминокислот каждая. Сродство репрессора к последовательности ДНК оператора зависит от ионной силы константа диссоциации в клетке, вероятно, менее 10 " моль/л . Структура участка связывания ДНК в 1ас-репрессоре до сих пор не выяснена, однако удаление трипсином 59 остатков с Л -конца и 20 остатков с С-конца предотвращает связывание. Несколько больше известно об участке связывания индуктора. Измерения флуоресценции показывают, что находящийся в участке связывания индуктора остаток триптофана при связывании перемещается в менее полярное окружение. Изучение изменения флуоресценции методом остановленного потока показывает, что процесс связывания проходит в две стадии. Быстрая начальная стадия подчиняется, как и ожидалось, кинетике второго порядка. Более медленная стадия мономолекулярна и, по- [c.569]

    Известен также метод пептидных карт, позволяющий устанавливать незначительные различия в первичной структуре родственных Б. Для этого Б. частично гидролизуют специфич. протеолитич. ферментами (особенно удобен трипсин, разрывающий пептидные связи у карбонильных п)упп остатков лизина и аргинина), затем пептиды каждого Б pa дeляют электрофорезом и распределительной хроматографией При сравнении полученных пептидных карт различных Б оказывается, что все идентичные пептиды располагаются в определенных (одних и тех же) местах, за исключением пептидов, по к-рым Б отличаются друг от друга Этим методом впервые обнаружено, что при замене одного остатка глутаминовой к-ты в молекуле гемоглобина на остаток валина образуется серповидноклеточный гемоглобин, встречающийся при одном из видов анемии. Методом пептидных карт изучают генетич. аспекты эвотюционных изменений Б. и выявляют изменения Б. при различных заболеваниях. [c.121]

    Для связывания с белком водорастворимый полимер должен иметь группы, способные взаимодействовать с функциональными группами белка в условиях, не вызывающих денатурацию последнего. В подавляющем большинстве случаев это реакции в водных растворах при pH = 6—8, реже 3—10. Химические методы при этом в основном те же, что применяются при иммобилизации ферментов [6], а также для связывания с полимером низкомолекулярных ФАВ. В белке для взаимодействия с полимером-носителем используют главным образом аминогруппы. Участие в реакции тиольных групп не всегда желательно, так как их в белках немного и они часто существенны для физиологической активности. Белок может быть предварительно обогащен тиольными группами, например обработкой Ы-ацетил-гомоцистеинтиолактоном, после чего его связывают с полимером. Карбоксильные и ароматические группы белка используются редко, так как в первом случае приходится активировать белок, после чего возникает возможность его сшивания, а во втором — нередко наблюдается снижение физиологической активности белка из-за изменения структуры его гидрофобных областей. [c.162]

    Пример 16-А, Изменения структуры фермента, вызванные веществами, которые с ним связываются. Спектры КД многих ферментов меняются, когда фермент взаимодействует с субстратом, коферментом или ингибитором. Это можно использовать для исследования процесса связывания. Например, измеряя силу врандения в зависимости от концентрации связанных молекул, можно определить константы связывания. Так как каждая связанная молекула изменяет R на определенную величину, из величины суммарного изменения можно определить число связанных молекул. В тех случаях, когда изменения КД малы, их можно усилить, вводя в активный центр или недалеко от него оптически активный хромофор или хромофор, который становится оптически активным при связывании с белком, и изучая затем изменения КД этого хромофора. Таким путем можно, кроме того, идентифицировать активные центры для этого в различные участки белка вводят хромофор и определяют, в каком участке связывание субстрата оказывает влияние на КД. Методика во многом похожа на метод репортерных групп, применяемый в абсорбци-оиной спектроскопии (гл. 14). Можно предположить следующую ситуацию. В белке имеется 4 гистидина и один из них находится в активном центре. Вводя хромофор (часто с трудом) по соседству с одним из гистидинов, исследуют КД хромофора до и после связывания субстрата. Если пет влияния на спектры КД хромофора, находящегося по соседству с гистидинами 1, 2 и 4, но есть в случае гистидина 3, это может свидетельствовать о присутствии гистидина 3 в активном центре. Отметим, однако, что эти эффекты экспериментально трудно уловить. [c.471]

    До этих работ изучение ферментов проводилось в автолити-ческих смесях. Отдельные органы или ткани растений измельчались и выдерживались в течение некоторого времени при определенной температуре с добавлением тех веществ, превращения которых хотели изучать. Затем с помощью химических анализов определяли изменения в содержании веществ, которые произошли за время опыта под действием ферментов, находящихся в растениях. Однако в таких опытах при разрушении клеток взаимосвязь между отдельными клеточными структурами и содержащимися в них ферментами нарушается, многие клеточные структуры разрушаются, и входящие в них ферменты из адсорбированного состояния переходят в раствор. В результате синтетические процессы почти не идут, а активность гидролитических ферментов резко возрастает. Особенно сильно повышается активность протеолитических ферментов, которые разрушают не только запасные белки клетки, но и белки-ферменты. Происходит процесс самопереваривания растительных тканей, аналогичный процессу переваривания веществ в пищеварительных органах животных. Таким образом, метод автоли-тических смесей не мог дать достоверных результатов о действии ферментов в живых растениях. [c.73]

    Значительная чувствительность флуоресценции к внутримолекулярным и межмолекулярным изменениям позволяет выявить взаимодействия молекул, не обнаруживаемые другими методами. Так, ионизация и взаимодействие между мо.пекулами, которые трудно обнаружить спектрофотометрическими методами, могут изменять квантовый выход флуоресценции. Флуорофоры, взаимодействуя со специфическим ферментом, могут увеличить или уменьшить интенсивность его флуоресценции, и по степени изменения интенсивности можно судить о типе связи. Межмолекулярные и внутримолекулярные взаимодействия могут вызвать также изменения в спектрах возбуждения и флуоресценции. А по изменению спектров можно также судить об изменениях в структуре флуорофора, сопровождающих молекулярное взаимодействие. [c.84]

    Объектами исследования служили пoJшвиниJЮвый спирт (ПВС) марки 16/1 (ГОСТ 10779-78) со средней молекулярной массой 60 ООО и содержанием ацетатных групп 1,5 % и протеолитический фермент - пепсин говяжий с молекулярной массой 35 ООО Пленки получали поливом из 12%-ного водного раствора ПВС и композиции ПВС с ферментом в количестве 5% (на полимер) на поверхность стекла с помощью фильеры с последующей криообработкой при 225 К Химические и структурные изменения в полимере исследовали методом ИК-Фурье спектроскопии как в режиме пропускания, так и методом многократного нарушенного полного внутреннего отражения (МНПВО). Структуру пленок изучали также с помощью [c.214]

    Для отбора мутантов с дефектами экспрессии генов и регуляции обмена веществ используют эффективные кетоды селекции. Один из них состоит в получении мутантов, устойчивых к структурным аналогам целевого продукта (см. с. 35). В основе другого метода лежит выделение ревертантов из ауксотрофных мутантов. У таких мутантов восстановлена способность к синтезу конечного продукта, однако механизм ретроингибирования у них не функционирует вследствие изменения пространственной структуры ключевого фермента. [c.39]

    Проблема синтеза белка тесно связана с понятием генетического кода. Генетическая информация, закодированная в первичной структуре ДНК, еще в ядре переводится в нуклеотидную последовательность мРНК. Вопрос о том, каким образом эта информация передается на белковую молекулу, долго не был ясен. Первые указания на существование прямой линейной зависимости между структурой гена и его продуктом — белком можно найти у Ч. Яновского. В серии изящных опытов с применением методов генетического картирования и секвенирования он показал, что порядок изменений в структуре мутантного гена триптофансинтазы у Е. oli точно соответствует порядку изменений в аминокислотной последовательности молекулы белка-фермента. [c.520]

    Субстраты — малые молекулы или малые группы больших молекул. Напротив, фермент макромолекулярен. Следовательно, субстрат непосредственно взаимодействует с определенным малым участком молекулы фермента — с ее активпы.и центром. Природа активного центра, т. е. совокупность и расположение аминокислотных остатков, а также кофакторов (см. с. 48), входящих в его состав, установлена для ряда ферментов. Мы уже упоминали о фермент-субстратном узнавании (с. 58). Изменения активности, возникающие в результате химической модификации белка, позволяют выявить функциональные группы активного центра. Сведения о его структуре дают оптические и спектраль- ные методы, а также рентгеноструктурный анализ комплексов фермента с конкурентными ингибиторами, строение которых близко к строению субстратов. [c.182]

    Такие направленные изменения в белках (белковая инженерия) стали важным инструментом для установления роли отдельных аминокислотных остатков в формировании пространственной структуры белка и выполнении им своих функций. В качестве примера можно привести результаты исследования роли остатка тирозина-248, входящего в активный центр карбоксипептидазы А (см. 6.1). После установления пространственной структуры этого фермента с помощью рентгеноструктурного анализа высказывалась точка зрения, что гидроксигруппа этого остатка принимает участие в подаче протона на атом азота гидролизуемой пептидной связи и одновременно в удалении протона от молекулы атакующей воды. Однако, когда методом сайт-специфичного мутагенеза была осуществлена замена этого остатка тирозина на фенилаланин, оказалось, что каталитичесюш свойства фермента практически не изменились. Таким образом, роль гидроксигруппы тирозина-248 в катализе не подтвердилась. [c.306]

    Изменения активности некоторых белков коррелируются, как правило, с изменениями ряда физических свойств. Так, изменение формы белковой молекулы можно установить по изменению некоторых гидродинамических характеристик (например, коэффициента трения, инкремента вязкости), по изменению светорассеяния, поверхностных свойств, диффузии через полупроницаемые мембраны и скорости седиментации [90]. Изменения термодинамических свойств (энтальпии и энтропии), объема, растворимости, оптического вращения, поглощения в инфракрасной области, дифракции электронов, а также некоторые другие характеристики, приведенные Каузманом [90], используются для Оцейки изменений формы белковых молекул. Большинство этих измерений было проведено па макромолекулах неизвестной структуры, для которых не была установлена последовательность аминокислотных остатков. В настоящее время благодаря усовершенствованию методов деградации белков, аналитического определения Концевых групп, методов разделения и идентификации отдельных фрагментов можно успешно изучать белки с молекулярным весом порядка 20 ООО. Хотя эта работа еще не достигла молекулярного уровня, тем не менее она дает возможность лучше использовать значения физических констант белковой молекулы известной структуры для объяснения механизма взаимодействия фермента с субстратом. Структура такого белка, как фиброин (белковое вещество натурального шелка), в настоящее время хорошо изучена благодаря сравнению рентгенограммы и ИК-спектров нативного волокна с рентгенограммами [35, 38, 108, 140] и ИК-спектрами [168] небольших фрагментов белка известной структуры, полученных при деградации, а также синтетитегаихпмшнептидо [c.386]

    Гексокиназа присутствует почти во всех клетках-животных, растительных и бактериальных. Она катализирует фосфорилирование не только D-глюкозы, но и некоторых других обычных гексоз, например D-фруктозы и D-маннозы. Гексо-киназу удалось вьщелить из дрожжевых клеток в кристаллическом виде, и ее трехмерная структура была детально изучена методом рентгеноструктурного анализа. Связывание гексокиназы с гексозой происходит по типу индуцированного соответствия молекула фермента претерпевает при этом глубокое конформационное изменение (см. рис. 12 и 13 к дополнению 9-4). Для проявления активности гексокиназе необходимы ионы Mg , поскольку истинным субстратом для этого фермента служит не АТР , а комплекс MgATP " (разд. 14.8). [c.446]

    Мутанты с измененной чувствительностью к эффектору. Мутантов, у которых изменена чувствительность какого-нибудь аллостерического фермента к эффектору, можно также выделять с помощью совершенно иного принципа, а именно как ревертантов к ауксотрофии. При этом поступают следующим образом. Сначала вьщеляют мутантов с дефектом регуляции, ауксотрофных в отношении метаболита, который хотят получить как конечный продукт, накапливающийся в среде. Затем среди этих ауксотрофных мутантов отбирают таких, у которых неспособность к синтезу данного метаболита обусловлена дефектом в аллостерическом ферменте соответствующего пути биосинтеза После этого из полученной мутантной популяции выделяют прототрофных ревертантов, которые не нуждаются в этом конечном продукте, так как сами спо-собнь его синтезировать. Среди ревертантов отбирают тех, которые выделяют нужный продукт в среду. Их можно выявить биоавтографиче-ским методом (разд. 10.2.2) или распознать по росту сателлитных колоний. О таком мутанте, полученном в результате двукратного отбора, можно составить себе следующее представление. У него после первой мутации перестал функционировать каталитический центр одного из аллостерических ферментов. Вторая мутация затронула структуру (конформацию) всей белковой молекулы, в результате чего каталитическая активность фермента восстановилась, но аллостерическая чувствительность оказалась утраченной. Как в этом, так и во многих других случаях для выделения желательного мутанта необходим ряд этапов, включающих мутагенез и отбор. [c.500]

    Вьшод об искажении электронной структуры иона Со(П) удаленными кислородсодержащими группами позволяет предположить, что спектр Со(П) КАС, наблюдаемый при высоких значениях pH, отражает образование упорядоченной структуры молекул растворителя. Этот вывод подтверждается также спектральными исследованиями [270, 277] Со(П)-замещенного фермента в присутствии анионных и ацетазоламидного ингибиторов в сочетании с кристаллографическими исследованиями [37, 252, 278]. Увеличение концентраций ацетазоламида, анионов азида или цианида в щелочных условиях приводит к исчезновению спектра, характерного для Со(П)-фермента при высоких pH (рис. 25). Кроме того, Линдског [270] указывал, что ингибиторные анионы, такие, как 1 , Вг и С1 , сдвигают величины р/Сд спектральных изменений к более высоким значениям. Данные ЯМР-исследования С1 [254] показывают, что связывание С1 ионом Zn(II) происходит при pH 6, постепенно уменьшается при увеличении pH и полностью исчезает при pH 9. Исследование кристаллов КАС, ингибированной галогенидами, разностным методом Фурье [69,252,278] показывает, что при низких значениях pH ( 7,2) анионы присоединяются вблизи иона Zn(II) и что при увеличении pH расстояние Zn — галоген ид возрастает. Связывание галогенид-ионов вблизи иона Zn(I I) [c.110]

    На основе рентгеноструктурного анализа с высоким разрешением проведено сравнение стереохимических свойств трех типов взаимодействий металл—белок. Для установления структурных и электронных факторов, ответственных за регуляцию активности иона металла, рассмотрены координационные центры металл — лиганд в белках и прослежена связь между молекулярной структурой, стереохимией и электронной структурой и биологической ролью функции иона металла. Гидро( бное взаимодействие порфиринового кольца гемоглобина и миоглобина рассмотрено по данным измерений магнитной восприимчивости, спектроскопии парамагнитного резонанса и исследования поляризационных спектров поглощения монокристаллов. С точки зрения электронной конфигурации (1-орбиталей и геометрии координации обсуждается взаимодействие замещенных ионов металлов в карбоксипептидазе А с карбонильной группой субстратов при гидролизе пептидов. Предполагается, что спектральные изменения, зависящие от pH и наблюдаемые в спектре электронного поглощения, замещенного иона Со(П), каталитически активного в карбоангидразе, обусловлены образованием упорядоченной структуры растворителя вблизи иона Со(И), Корреляция между молекулярной структурой, определенной методами рентгеноструктурного анализа, и электронной структурой координационного центра металл — лиганды, оцененной из спектроскопических данных, указывает на происхождение структурной регуляции реакционной способности иона металла в белках и ферментах. [c.123]

    Сульфгидрильная функциональная группа белков играет, как известно, важную роль в механизмах функционирования определенных ферментов. Поскольку большинство этих ферментов содержит несколько 5Н-групп, идентифицировать именно ту сульфгидрильную группу, которая непосредственно осуществляет каталитическую функцию, и определить ее место в аминокислотной цепи — довольно трудная задача. В некоторых благоприятных случаях каталитически активная 5Н-группа оказывается также наиболее химически активной, что может быть обусловлено ее незащищенным положением в третичной структуре фермента или ее окружением. Добавление одного эквивалента реагента на 5Н-группу, меченного радиоактивным изотопом, должно привести к тому, что помстится интересующая нас ЗН-группа. Однако 5Н-группа в активном центре может обладать такой же или меньшей реакционной способностью по сравнению с другими 5Н-групнами, и ее удается пометить лишь при помощи какого-нибудь остроумного метода. Если 5Н-груп-па, непосредственно участвующая в каталитическом акте, защищена субстратом от алкилирующих агентов, то после предварительного алкилирования всех остальных 5Н-групп в присутствии субстрата и последующего удаления избытка немеченого алкилирующего агента и субстрата ее можно пометить алкилирующим соединением, содержащим радиоактивную алки-лирующую группу. Этот прием используют только с нативным ферментом, поскольку добавление денатурирующего агента приводит к изменению укладки полипептидной цепи и нарушению специфической конформации активного центра, в результате чего субстрат не в состоянии защитить каталитически активную 5Н-группу, Алкилирующими агентами, удобными для проведения такого рода экспериментов, оказал ись С-иодацетамид и [c.479]


Смотреть страницы где упоминается термин Фермент изменение структуры методом: [c.167]    [c.389]    [c.14]    [c.391]    [c.14]    [c.14]    [c.6]    [c.304]    [c.354]    [c.23]    [c.401]    [c.588]    [c.124]    [c.475]    [c.188]    [c.95]    [c.169]    [c.451]    [c.477]   
Физическая Биохимия (1980) -- [ c.471 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение структуры пор

Метод структур

Ферментов структуры



© 2024 chem21.info Реклама на сайте