Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Антигены гормоны

    Опыт ставится обычно следующим образом. В серию про--бирок наливают различные объемы пробы, в которой требуется определить концентрацию гормона, например инсулина.-Одновременно готовят пробы, содержащие известное количество этого гормона. Затем в каждую пробирку добавляют стандартное количество меченого гормона (обычно используются гормоны, меченные испускающим улучи) и специфического к гормону антитела. Раствор инкубируют некоторое-время (несколько минут или часов) для достижения равновесия между гормоном (антигеном) и комплексом антитело — гормон. Далее отделяют комплекс гормон — антитело, например, методом гель-фильтрации или осаждением сульфатом аммония и измеряют радиоактивность полученного комплекса. Если в определяемой пробе гормон содержится в высокой-концентрации, то разведение меченого гормона окажется выше, а радиоактивность комплекса гормон — антитело соответственно ниже по сравнению с пробой, где данный гормон присутствует в более низкой концентрации. Используя известные концентрации гормона, строят стандартную кривую, с помощью которой непосредственно определяют концентрацию-гормона в исследуемой пробе. [c.318]


    Рассмотрен подход к решению обратной структурной задачи, основанный на физической конформационной теории природных пептидов и белков, прежде всего оценке особой роли ближних взаимодействий в их структурной организации и использовании классификации пептидных структур на шейпы, формы и конформации. Показано, что можно добиться целенаправленного и контролируемого изменения структуры пептида за счет ближних взаимодействий простыми средствами, выработанными в процессе эволюции органического мира. Изложенный в книге подход к решению обратной задачи позволяет заранее, еще до синтеза и биологических испытаний целенаправленно конструировать модели искусственных аналогов, пространственные структуры которых отвечают низкоэнергетическим и физиологически активным конформационным состояниям природного пептида. Возможности теоретического моделирования искусственных аналогов продемонстрированы на конкретных примерах. Полученные результаты подтверждают необходимость его использования в изучении молекулярных механизмов функционирования пептидных гормонов, катализа ферментов, взаимодействий антител с антигенами и т.п. (см. гл. 17). [c.590]

    Образование комплексов фермент—субстрат и гормон—рецептор предполагает узнавание молекулами друг друга. На более высоком уровне организации такой способностью обладают клетки. Так, лейкоциты в токе крови узнают и разрушают чужеродные клетки, например бактериальные, но не нападают на собственные клетки крови. Узнавание проявляется и в контактном ингибировании некоторые клетки высших организмов (например, клетки мышечной ткани) в питательной среде продолжают делиться до тех пор, пока не придут в контакт с другими клетками, после чего их рост прекращается. Раковые клетки в тех же условиях продолжают делиться. В этих двух примерах клеточного узнавания, имею- щего важное значение в медицине, участвуют поверхностные антигены. Уникальность специфических типов клеток указывает на большое разнообразие их поверхностных антигенов, что дополнительно усложняет строение биологических мембран. Процессы клеточного узнавания зависят от подвижности компонентов мембраны, которая, по-видимому, регулируется с помощью микротрубочек, имеющихся в цитоплазме [4]. [c.108]

    К типичным гликопротеинам относят большинство белковых гормонов, секретируемые в жидкие среды организма вещества, мембранные сложные белки, все антитела (иммуноглобулины), белки плазмы крови, молока, овальбумин, интерфероны, факторы комплемента, группы крови, рецепторные белки и др. Из этого далеко не полного перечня гликопротеинов видно, что все они выполняют специфические функции обеспечивают клеточную адгезию, молекулярное и клеточное узнавание, антигенную активность опухолевых клеток, оказывают защитное и гормональное, а также антивирусное действие. [c.91]


    Для описания сути метода обозначим антитело как АВ , а соответствующий антиген как лиганд Ь. Этим лигандом в нашем случае является гормон, а в принципе это могут быть любые лекарственные соединения пептиды, полипептиды, нуклеиновые кислоты и другие вещества, к которым получены антитела. [c.316]

    Под влиянием кислот инсулин претерпевает денатурацию, но основания регенерируют исходную физиологически активную форму. Агенты, разрывающие связи 8—8 необратимо денатурируют инсулин. Инсулин образует соединения с двухвалентными металлами из поджелудочной железы выделяют, как правило, хорошо кристаллизующееся соединение с цинком. Инсулин переваривается пепсином и химотрипсином и незначительно атакуется трипсином. Инсулин не проявляет антигенных свойств при впрыскивании животным, относящимся к другим родам, чем тот, из которого он был выделен. Как уже отмечалось инсулин быка, овцы и лошади различаются между собой последовательностью трех аминокислот определенного участка молекулы. Однако эти аминокислоты не имеют значения для физиологической активности гормона поэтому инсулин, выделенный из животных, может служить лекарственным препаратом для человека. [c.447]

    Области применения методики флуоресцентных антител крайне многочисленны, поэтому приводим лишь некоторые примеры а) локализация антигенов в тканях, в том числе выявление антигенов пневмококков, риккетсий и патогенных вирусов б) специфическое выявление микроорганизмов (серологическая идентификация) в) выявление специфических антител в тканях и жидкостях организма г) локализация гормонов в клетках разных органов и тонкая локализация. [c.292]

    Современные достижения генной инженерии. Изучение механизмов передачи генов у бактерий и участия в этом процессе внехромосомных элементов открыло возможность включения чужеродной ДНК в бактериальные клетки. Генетические манипуляции позволяют вносить небольшие отрезки носителей генетической информации высших организмов, например человека, в бактерию и заставлять ее синтезировать соответствующие белки. Вполне осуществимо производство гормонов антигенов, антител и других белков с помощью бактерий. Делаются также попытки передать растениям способность к азотфиксации и лечить болезни, связанные с биохимическими дефектами. [c.19]

    Общность и взаимосвязь химической и биологической форм движения выражается также в возможности практического использования принципов живой природы в химической технологии. Для всей живой природы характерно наличие специфических механизмов (защитных приспособлений) для борьбы против различных внешних воздействий посторонних тел, частиц. Но в каждой группе живых организмов они находят свое частное применение например, антибиотики для микроорганизмов, фитонциды у высших растений, явления фагоцитоза и реакция антиген-антител у животных организмов, В отдельных подразделениях эти явления уже достаточно изучены, так что могут быть применены в производстве. Всевозможные антибиотики, токсины, гормоны, вакцины, сыворотки, некоторые аминокислоты (например, глютаминовая, входящая в состав белка) ныне получаются с помощью микроорганизмов, в результате жизнедеятельности бактерий. [c.99]

    Представляется возможным исключить деятельность самого гипофиза с помощью радиоактивных антител к гипофизарным гормонам. Согласно иммунологическим представлениям, радиоактивные антитела достаточной чистоты и специфичности, будучи введенными в организм, при встрече с антигеном (в данном случае — гормон гипофиза, на который они выработаны) дают комплекс, который локализуется в месте его образования, являясь источником лучевого воздействия на гипофиз. [c.513]

    Описываемый метод основан на специфических взаимодействиях, характерных для некоторых биологических и биохимических процессов. Эти взаимодействия происходят между парами веществ, реагирующими в растворе с высокой избирательностью. Так, например, антитело и антиген специфически связываются друг с другом, фермент реагирует только со своим субстратом или с ингибитором, транспортная рибонуклеиновая кислота выбирает только ту аминокислоту, которую она может перенести внутрь рибосомы, эффектор реагирует с ферментом, действие которого он регулирует, а гормон реагирует с со- [c.26]

    А. X. применяют гл. обр. в науч. исследованиях для выделения ферментов, антител, антигенов, гормонов, вирусов, клеток. Особенно важно, что этим методом можно выделять следовые кол-ва (до песк. мкг) биологически активных п-в. А. X. примен. также для изучения четвертичной структуры ферментов, их активного центра, механизма действия и структуры нуклеиновых к-т, влияния гормонов иа клеточные рецепторы. [c.60]

    По своему существу аффинная хроматография — это особый тип адсорбционной хроматографии. В отличие от того, что было описано в гл. 6, адсорбция здесь осуществляется за счет биоспецифп-ческого взаимодействия между молекулами, закрепленными на матрице, т. е. связанными в неподвижной фазе, и комплементарными к ним молекулами, подлежащими очистке или фракционированию, поступающими, а затем элюируемыми с подвижной фазой. Биоспеци-фическое взаимодействие отличается исключительной избирательностью, а зачастую и очень высокой степенью сродства между партнерами. Оно лежит в основе множества строго детерминированных процессов, протекающих в организме. В качестве примеров можно назвать взаимодействия между ферментами и их субстратами, кофакторами или ингибиторами, между гормонами и их рецепторами, между антигенами и специфическими для них антителами, между нуклеиновыми кислотами и специфическими белками, связывающимися с ними в процессе осуществления своих функций (полимераза.мп, нуклеазами, гистонами, регуляторными белками), а также между самими нуклеиновыми кислотами-матрицами и продуктами их транскрипции. Наконец, многие малые молекулы (витамины, жирные кнслоты и др.) специфически связываются со специальными транспортными белками. [c.339]


    Особое распространение получили методы, основанные на использовании антигенов и антител, меченных ферментами, — так называемый иммунофермеитный анализ. Они используются для изучения широкого круга соединений — антител, пептидных и стероидных гормонов, вирусных и бактериальных антигенов, различных белков и ферментов. Существуют гетерогенные (твердофазные) и гомогенные методы иммуноферментного анализа, принципиально различающиеся способом разделения компонентов иммунохимической реакции. Твердофазные методы основаны на применении антител или антигенов, иммобилизованных на нерастворимых носителях. [c.306]

    Хим. синтез широко применяют для получения пептидов, в т. ч. биологически активных гормонов и их разнообразных аналогов, используемых для изучения взаимосвязи структуры и биол. функции, а также пептидов, несущих антигенные детерминанты разл. Б. и применяемьк для приготовления соответствующих вакцин. Первые хим. синтезы Б. в 60-е гг. (инсулина овцы и рибонуклеазы 5), осуществленные в р-ре с помощью тех же методов, к-рые используют при синтезе пептидов, были связаны с чрезвычайно большими сложностями. В каждом случае требовалось провести сотни хим. р-ций и окончательный выход Б. был очень низок (менее 0,1%), в результате чего полученные препараты не удалось очистить. Позже были синтезированы нек-рые химически чистые Б., в частности инсулин человека (П. Зибер и др.) и нейротоксин II из ядра среднеазиатской кобры (В. Т. Иванов). Однако до снх пор хим. синтез Б. представляет весьма сложную проблему и имеет скорее теоретич., чем практич. значение. Более перспективны методы генетической инженерии, к-рые позволяют наладить пром. получение практически важных Б, и пептидов. [c.253]

    Л. а. используют в иммунохим. анализе для определения антител, гормонов, лек. препаратов, вирусных и бактериальных антигенов по концентрации комплекса антиген-антитело. При этом в иммунном флуоресцентном анализе к антителу непосредственно присоединяют флуоресцирующие в-ва, напр. РЗЭ, флуоресцирующие красители (чувствительность метода 10" моль/л), а в иммуноферментном анализе к антителу присоединяют фермент и в результате ферментативной р-ции, сопровождаемой биолюминесценцией, определяют ферментативную активность (чувствительность метода 10" моль/л). [c.614]

    Э. обладают высокой биол. активностью, причем их активные концентрации на 1-3 порядка ниже, чем у др. стероидных гормонов. Для количеств, определения Э. в биол. жидкостях применяют радиоиммунологич. и иммуноферментный методы, основанные на р-ции антиген-антитело, где в качестве антигена используют конъюгированный с Э. белок. [c.490]

    Лучшим осадителем служит полиэтиленгликоль (ПЭГ). Его действйе подобно действию соли, отбирающей воду из структуры IgG и вызывающей ее денатурацию, в результате чего и происходит осаждение из раствора, но ПЭГ обеспечивает лучший контроль над системой. Метод широко используют в определениях ряда гормонов и стероидов различного типа, в ситуациях, когда гаптеновый антиген остается в растворе в условиях осаждения белка. [c.577]

    Для определения концентрации гормона смешивают меченный, например ИОДОМ-125, гормон с антителами к данному гормону. Образуется комплекс — гормон—антитело. При добавлении исследуемого экстракта немеченный гормон, находящийся в исследуемом растворе, конкурирует с меченым в реакции связывания с антителом, вытесняя последний из комплекса. Далее освобождеиный гормон отделяют от связанного электрофорезом, хроматографией или осаждением и количественно определяют его, измеряя радиоактивность. Из полученных данных можно рассчитать количество исследуемого немеченого гормона, так как радиоактивность свободного гормона зависит от того, насколько много меченого гормона было вытеснено из комплекса антиген — антитело. Более подробно с этим вопросом можно ознакомиться по литературе [582, 591]. [c.240]

    Пористое стекло (диаметр пор 5 — 250 нм), как и наиболее широко применяемые носители иа основе агарозы, отличается низкой неспецифической сорбцией и высокой емкостью. Аффинная хроматография нашла широкое применение при разделении ферментов, полнпептидных и белковых гормонов, антител, антигенов, а также транспортных и рецепторных белков. [c.354]

    По механизму взаимодействия сорбента и сорбата можно выделить несколько видов хроматофафии распределительнся хроматография основана на различии в растворимости разделяемых веществ в неподвижной фазе (газожидкостная матофафия) или на различии в растворимости веществ в подвижной и неподвижной жидких фазах ионообменная хроматография — на разной способности веществ к ионному обмену адсорбционная хроматография — на различии в адсорбируемости веществ твердым сорбентом эксклюзионная хроматография — на различии в размерах и формах молекул разделяемых веществ, аффинная хроматография — на специфических взаимодействиях, характерных дпя некоторых биологических и биохимических процессов. Существуют пары веществ, реагирующих в растворах с высокой избирательностью, например антитело и антиген, фермент и его субстрат или ингибитор, гормон и соответствующий рецептор, и т. п. Если одно из соединений пары удерживается ковалентной связью на [c.267]

    С помощью иммунологических реакций гормональных гликопротеинов показано значительное сходство этих соединений. Например, антисыворотка к фолликулостимулирующему гормону перекрестно реагирует с лютеинизирующим гормоном, хорионическим гонадотропином человека и тироидстимулирующим гормоном, что указывает на наличие в молекулах этих гормонов ряда общих антигенных групп наряду с их специфическими антигенными детерминантами. Показано, что такие гормоны состоят из субъединиц [195, 196], которые могут высвобождаться при действии трипсина, растворов пропионовой кислоты (I М), мочевины (8 М) или доде-цилсульфата натрия. Хотя таким образом были испытаны не все гликопротеины человека, однако в настоящее время полагают, что Р-субъединицы ответственны за специфичность гормона, тогда как а-субъединицы являются взаимозаменяемыми. Такой вывод согласуется со сходством аминокислотных последовательностей в а-субъединицах и уникальным характером р-субъединиц. При совместной инкубации а- и р-субъединиц в физиологических условиях возможна их рекомбинация, причем конечная биологическая активность выше суммарной активности отдельных субъединиц. Найдено также, что субъединицы гормонов из разных источников взаимозаменяемы. Более важен, однако, тот факт, что путем комбинации субъединиц из различных гликопротеиновых гормонов могут быть получены гибридные молекулы [196, 197], причем тип гормональной активности гибридного гликопротеина определяется первоначальной активностью р-субъединицы. [c.266]

    С развитием технологии рекомбинантных ДНК природа биотехнологии изменилась окончательно и бесповоротно. Появилась возможность оптимизировать этап биотрансформации более прямым путем, создавать, а не просто отбирать высокопродуктивные штаммы, использовать микроорганизмы и эукариотические клетки как биологические фабрики для производства инсулина, интерферона, гормона роста, вирусньгх антигенов и множества других белков. Технология рекомби-нантньгх ДНК позволяет получать в больших количествах ценные низкомолекулярные вещества и макромолекулы, которые в естественных условиях синтезируются в минимальных количествах. Растения и животные стали естественными биореакторами, продуцирующими новые или изме- [c.18]

    Биосенсоры. Действие биосенсоров основано на важнейших химических реакциях, от которых, без преувелтгче-ния, зависит сама жизнь. Реакции антитело - антиген, фермент - субстрат, рецептор - гормон— используются для [c.710]

    Чрезвычайно широкий спектр применений имеет иммуноанализ для определения как самого факта присутствия, так и измерения количества антигенов, в том числе гаптенов, т.е. низкомолекулярных соединений, к которым можно получить антитела, как правило, путем иммунизации животных конъюгатом гаптена с высокомолекулярным носителем, способным вызывать иммунный ответ. Иммуноанализ нашел широкое применение для анализа содержания различных гормонов, что имеет огромное значение для оценки состояния эндокринной системы человека и животных. Важное значение для оценки состояния окружающей среды, в первую очередь качества питьевой воды и пищевых продуктов, приобретает иммуноанализ содержания пестицидов. В связи с интенсивным развитием гибри-домной техники для анализа определенных антигенов всё более широкое применение находят моноклональные антитела. [c.257]

    Обзор аффинных лигандов, используемых для выделения ферментов, ингибиторов, кофакторов, антител, антигенов, агглютининов, гликопротеинов и гликополисахаридов, нуклеиновых кислот, нуклеотидов, транспортных и рецепторных белков, гормонов и их рецепторов, липидов, клеток, вирусов и других веществ дан в гл. 11 (табл. 11.1). [c.104]

    Как это детально показано в разд. 6.3, антитела проявляют высокое сродство соответствующим антигенам и наоборот. Трудности их освобождения из комплексов 0бусл0 Влены именно этим сильным взаимодействием. Использования сильных хаотропных элюентов в иммуноаффинной хроматографии можно избежать путем химической модификации иммобилизованных аффинных лигандов [39]. Например, элюирование антиглюкагоновых антител из колонки с иммобилизованным глюкагоном может быть осуществлено в мягких условиях, если частично нарушить пространственную комплементарность к связывающему участку антитела путем избирательной модификации гормона, например реакцией с 2-окси-5-нитробензилбромидом, тетранитрометаном или перекисью водорода. [c.107]

    Ограниченные запасы витаминов и гормонов в- животных привели к развитию механизмов адсорбции, транспорта и консервации этих веществ в следовых количествах. В таких процессах важную роль играют специфические транспортные или связывающие белки, предотвращающие быстрое выведение витаминов и гормонов с мочой, которое происходило бы, если витамины и гормоны не были бы связаны в плазме в соответствующих комплексах. Связывающие белки присутствуют в очень низких концентрациях. Например, белки, прочно связывающие витамин В12, траноко баламины I и И, находятся в плазме крови человека в концентрациях соответственно 80 и 20 мг на 1000 л. Однако они обычно имеют высокое сродство к комплементарным витаминам и гормонам. Константы диссоциации этих комплексов находятся в интервале от 10 до 10 моль/л [35]. Из-за низких концентраций эти белки нельзя выделить классическими методами очистки наличие специфических взаимодействий с высоким сродством позволяет использовать аффинную хроматографию, которая допускает работу с большими объемами исходного материала. Как и для взаимодействий антитело — антиген, трудности заключаются в последующем выделении белка из комплекса с аффинными сорбентами. [c.124]

    В общем рассмотренный метод может быть применен не только для выделения рецепторных участков гормонов, передатчиков информации или сигналов, лекарственных препаратов, лектинов и специфических антигенов и антител, но также и для картирования топологии мембраны и клетки. [c.166]

    Специфические сорбенты, использующие исключительные свойства биологически активных веществ образовывать специфические и обратимые комплексы, в огромной степени облегчают выделение ряда ферментов, их ингибиторов и кофакторов, антител и антигенов, лектинов, гликопротеинов, гликополисахаридов, нуклеиновых кислот, нуклеотидов, жиров, транспортных и рецепторных белков, гормонов и их рецепторов, клеток и многих других соединений, как это представлено в обзорной табл. 11.1. Наряду с названием выделяемого вещества в таблице приведены также используемые аффинные лиганды, нерастворимые носители и пространственные группы, причем указано, аффинный лиганд или нерастворимая матрица модифицированы данной пространственной группой. Обзорная таблица включает выделения веществ как с помощью типичной биоаффинной хроматографии, так и с помощью гидрофобной или ковалентной хроматографии. [c.367]

    Биологические функции. Белки могут выполнять в живых организмах самые различные функции катализировать (ферменты) и регулировать (гормоны) биохимич. реакции входить в состав соединительной ткани (напр., коллаген) или мышц (актин, миозин) служить резервными питательными веществами (гранулы белка в цитоплазме) и др. Функции дезоксирибонуклеиновой к-ты — передача генетич. информации из поколения в поколение при клеточном делении. Этот Б. служит исходной матрицей при передаче информации внутри клетки. Рибонуклеиновая к-та также участвует в этом процессе, приводящем к синтезу специфич. белков клетки. Полисахариды могут служить резервными питательными веществами (напр., крахмал, гликоген), выполнять структурные функции (напр., целлюлоза полисахариды соединительной ткани), обеспечивать специфические свойства поверхности клеток (напр.1, антигенные полисахариды микроорганизмов) или защиг ту организма в целом (напрнмер, камеди и слизи растений). [c.128]

    Для люминесцентной метки белков применяют флуорохромы изоцианат и изотиоцианат флуоресцеина, некоторые производные родамина, в том числе изоцианат тетраметилродамина, хлорид диметил-нафтил-ами-но-сульфокислоты и ядерный красный прочный. Наиболее широко используется изоцианат флуоресцеина. Его растворяют в смеси диоксана с ацетоном и в таком виде соединяют с белком (обычно глобулиновой фракцией в количестве 5 мг флуорохрома на 100 мг белка) при температуре О—5° С, перемешивая в течение 18 часов. Полученный коньюгат белка с флуоресцеином освобождают от несвязавшегося красителя сначала с помощью диализа против забуференного при рН=9,0 физиологического раствора. Дальнейшая очистка от избыточного красителя производится переосаж-дением белка сульфатом аммония (4—5 раз), пока надосадочная жидкость не перестает люминесцировать. Препараты (мазки, суспензии, замороженные срезы), как фиксированные ацетоном, так и нефиксированные, приводят в соприкосновение с люминесцентно-меченым белком в течение 30 минут, промывают в физиологическом растворе (рН=7ч-7,5) и заключают в забу-ференный глицерин. Исследовать такие препараты лучше при ультрафиолетовом возбуждении. Соответствующие антигены при этом люминесцируют очень ярко светло-зеленым светом. Этот метод позволяет определять внутриклеточную локализацию чужеродных полисахаридов и белков, ферментов и гормонов, устанавливать антигенное родство тканей и клеток, быстро идентифицировать под микроскопом бактерии й вирусы. [c.317]

    В ответ на попадание в организм чужеродных белков (антигенов) у животных синтезируются специфические к ним антитела. Белок-антитело, появляющийся в сыворотке крови, обладает способностью очень прочно, но обратимо связываться с молекулой антигена. Каждое антитело характеризуется высокой степенью специфичности и связывает только тот антиген, который стимулировал его выработку. Эти свойства антител, а именно их специфичность и сродство по отношению к своим антигенам были использованы Розалиндой Ялоу и ее коллегами для измерения крайне малых концентраций полипептидньк гормонов в крови и тканях. Суть метода состоит в следующем. Измеряемый гормон используют в качестве антигена (Аг) и вводят его морским свинкам. После нескольких инъекций у животных в плазме крови появляются антитела к введенному гормону, причем в достаточно высокой концентрации. Далее из сыворотки выделяют антитела (Ат) и смешивают их с известным количеством радиоактивно меченного гормона (Аг) при этом в результате обратимой реакции, равновесие которой сильно сдвинуто вправо, образуется комплекс антиген-антитело  [c.784]

    До настоящего времени иммуно-гель-фильтрация находила применение в немногих работах. Хансон [50] применял этот метод для сравнительного изучения лиофилизованного и нелиофи-лизованного гормона роста человека. Этим методом было обнаружено антигенное взаимодействие между иммуноглобулином [c.274]


Смотреть страницы где упоминается термин Антигены гормоны: [c.475]    [c.37]    [c.219]    [c.446]    [c.565]    [c.240]    [c.242]    [c.475]    [c.265]    [c.131]    [c.219]    [c.220]    [c.16]    [c.44]    [c.513]    [c.7]    [c.33]   
Биохимия Том 3 (1980) -- [ c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Антигенность

Антигены

Гормоны



© 2025 chem21.info Реклама на сайте