Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизмы реакций серебра с молекулярным кислородом

    Хемосорбционные исследования приводят к выводу, что на чистом серебре может существовать некоторое количество атомарного кислорода, который прочно связан с поверхностью катализатора и практически не принимает участия в реакции окисления . Существенным моментом предложенной схемы является отрицание распада молекулярного кислорода на поверхности серебра на атомы, которые, обладая меньшими размерами и большей диффузионной способностью, имели бы и большую склонность к образованию известных кислородных соединений серебра. Поскольку, однако, никаких соединений, кроме супероксида серебра, на поверхности катализатора не обнаружено, то это подтверждает следующий механизм взаимодействия кислорода с серебром  [c.292]


    А. В. Хасин (Новосибирск, СССР). В связи с докладом 46 отмечу, что нами было исследовано взаимодействие молекулярного водорода с адсорбированным на пленках серебра кислородом и установлено, что процесс имеет сложный механизм. Изучение зависимости скорости связывания водорода предварительно адсорбированным кислородом от степени покрытия поверхности при 20°С показало, что когда число связанных молекул водорода становится близким к числу адсорбированных молекул кислорода, скорость процесса резко изменяется, уменьшаясь более чем в 50 раз. Атомное отношение прореагировавшего водорода к адсорбированному кислороду, равное единице, достигается в первые же минуты после начала реакции независимо от степени покрытия, после чего процесс протекает медленно. [c.80]

    Масс-спектрометрическое исследование реакции показало, что при быстром связывании водорода выделение воды очень мало. Десорбция воды происходит, главным образом, при медленном связывании водорода. Экспериментальные данные позволяют принять для реакции между адсорбированным на серебре кислородом и молекулярным водородом механизм, включающий два этапа. Первый, быстрый этап, заключается в образовании на поверхности адсорбированных гидроксильных групп. Второй этап представляет собой взаимодействие молекул водорода с поверхностными гидроксилами с образованием воды. Оба этапа, возможно, не являются элементарными и имеют сложный механизм. [c.80]

    Существуют два типа окислительных реакций непредельных углеводородов 1) прямая атака двойных или тройных связей электрофиль-пыми реагентами, например озоном, фотосенсибилизированным молекулярным кислородом, органическими перкислотами, свободными гидроксильными радикалами, активированной светом перекисью водорода или различными неорганическими перекисями, способными образовывать неорганические перкислоты, перманганатом, неорганическими окислами, такими как четырехокись осмия, пятиокись ванадия, окись хрома и двуокись марганца, солями ртути, иодобензоатом серебра, диазоуксусным эфиром и подобными веществами 2) косвенная атака метиленовых групп, смежных с двойными и тройными связями и с ароматическими ядрами, такими реагентами, как молекулярный кислород, органические перекиси, двуокись селена, тетраацетат свинца,хлористый хромил, трет-бутил-хромат, бромсукцинимид и т. д. Первый тип реакций протекает по ионному механизму, второй — по свободнорадикальному механизму. Некоторые из этих реакций будут рассмотрены в следующих разделах. [c.347]


    Как видно из настоящей работы, при соответствующих 0 скорость адсорбции кислорода является величиной одного порядка со скоростью окисления водорода на тех же катализаторах. Вместе с тем принято считать, что золото, серебро и медь не хемосорбируют молекулярный водород (наиример, [17, 24—2G]). Отсутствие хемосорбции водорода на этих металлах может быть связано с тем, что выигрыш энергии при адсорбции атомов водорода не компенсирует затрат энергии на разрыв молекул1.( М, (хемосорбция молекулярного водорода маловероятна). Не исключено также, что адсорбция водорода не наблюдается в связи с тем, что скорость ее по порядку величины значительно меньше, чем скорость адсорбцш кислорода при соответствующих температурах, что, по-видимому, происходит в случае меди [26]. Очевидно, можно считать установленным, что адсо])бция водорода но может давать заметного вклада в скорость окисления водорода на золоте, меди и серебре. Возрастание активиости золота в реакции (П1) в присутствии муравьиной кислоты [27] не противоречит этому. Как показано в [27], в последнем случае механизм окисления существенно изменяется, и образование воды идет не за счет реакции кислорода с водородом, а за счет реакции кислорода с адсор-бированпымн на золоте атомами водорода, образующимися при разложении НСООН. Приведенные соображения дают основание утверждать, что окисление водорода в присутствии металлов 16 группы идет по ударному механизму в результате взаимодействия адсорбированного кислорода с налетающим из газовой фазы водородом. [c.55]


Смотреть страницы где упоминается термин Механизмы реакций серебра с молекулярным кислородом: [c.224]    [c.221]    [c.670]   
Окись этилена (1967) -- [ c.274 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород молекулярный

Молекулярность реакции

Серебро реакции



© 2024 chem21.info Реклама на сайте