Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент массообмена, связь с коэффициентом теплообмена

    Второй способ упрощения, являющийся разновидностью первого, состоит в том, что число пространственных координат сокращается до одной. В качестве модели развития процессов переноса в направлении отброшенных координат принимаются эмпирические закономерности. Обычно это критериальные уравнения, позволяющие определить кинетические коэффициенты тепло- и массообмена и легко выразить объемные источники массы и энергии через параметры системы (2.2.1). Численные значения коэффициентов критериальных уравнений определяются на основе обработки экспериментальных данных или данных имитационного моделирования задач, полученных в приближениях пограничного слоя, с привлечением теории размерностей и подобия. Уравнение движения 3) в системе (2.2.1) исключается, а осевая скорость движения среды усредняется по сечению аппарата. Данный метод нашел широкое применение в инженерном подходе к моделированию теплообменных и массообменных аппаратов и представляется нам едва ли не единственным при построении полных математических моделей динамики объектов химической технологии. Его преимущества видятся не только в том, что при принятых посылках относительно просто достигается численная реализация математического описания, в котором учитываются причинно-следственные связи между звеньями и их элементами, но и в том, что открывается возможность формализации процедуры построения открытых математических моделей химико-технологических аппаратов. Эта процедура может быть выполнена в виде следующего обобщенного алгоритма. [c.36]


    В общем случае процесс массообмена совершается в три последовательных этапа диффузия переходящего вещества в объеме одной фазы по направлению к межфазной поверхности, переход через последнюю и диффузия в объеме второй фазы. Подобно теплообмену массообмен характеризуется количеством вещества М, переходящего из одной фазы в другую (диффузионный поток) за время т, пропорционально движущей силе процесса А и площади межфазной поверхности Р. Величины М, Р и х связаны между собой коэффициентом пропорциональности К, носящим название коэффициента массопередачи  [c.422]

    Формула (4.66) выражает связь итогового физико-химического КПД с физико-химическим (массообменным) КПД, степенью химико-химической регенерации и коэффициентами потерь. Отметим, что по своей структуре выражение для итогового физико-химического КПД в основном аналогично выражению для теплового КПД теплотехнического афегата, в котором также используется представление о теплообменном КПД и степени тепловой регенерации (см. формулу (4.47)). Эти аналогии отчетливо прослеживаются на графике рис. 4.9, где одновременно представлены величины Л. и в функции Лр и Лр и л и л . [c.295]

    При сорбции, а особенно испарении, на поверхности выделяются или поглощаются значительные количества тепла. Поэтому массообмен с газовой фазой обычно сопровождается теплообменом, причем направления теплового потока д и потока вещества т могут быть взаимно противоположны (т. е. знаки дит обратны). При растворении или кристаллизации, благодаря высокой теплоемкости растворителя, возникающие разогревы незначительны и к тому же равновесные концентрации в растворах сравнительно медленно изменяются с температурой. Поэтому в последнем случае можно изучать массообмен в практически чистом виде. Для газовых потоков тепло- и массообмен не только связаны, но и их кинетические коэффициенты аир взаимно пропорциональны. [c.479]

    Определить интенсивность теплообмена по формулам Ньютона и Дальтона не представляется возможным, так как коэффициенты тепло- и массообмена изменяются с течением времени, а температура и влагосодержание на поверхности тела определяются сочетанием подвода тепла и влаги (внутренний влаго- и теплообмен) и отвода тепла и влаги с поверхностей тела в окружающую среду (внешний тепло- и массообмен). Полное решение такой задачи (расчет скорости сушки) связано с решением системы дифференциальных уравнений массо- и теплопереноса при соответствующих граничных условиях. [c.111]


    В статье [12] высказаны также соображения по механизму процесса теплообмена при кипении воды в трубах. Автор правильно считает, что основной причиной интенсификации теплообмена является разрушение ламинарного пограничного слоя образующимися на поверхности нагрева пузырьками пара, а также турбулентными пульсациями и, по-видимому (при еще более высокой интенсивности теплообмена), пока еще мало изученными кавитационными явлениями. Это разрушение пограничного слоя становится более интенсивным с ростом частоты образования пузырьков и числа центров парообразования, т. е. с увеличением теплового потока. Так как эти явления происходят на поверхности нагрева, то разрушение пограничного слоя представляет собой очень сложный процесс. Однако увеличение скорости основного потока никогда не приводит к полному разрушению пограничного слоя, а лишь уменьшает его эффективную толщину. Поэтому скорость в некоторых случаях менее существенно влияет на коэффициент теплоотдачи, чем тепловой поток. При увеличении турбулизации ядра потока увеличивается массообмен через ламинарный слой и возрастает интенсивность теплообмена. В связи с этим автор вводит в свое уравнение параметр ш/шкр. где аНкр.— критическая скорость, соответствующая переходу в трубах ламинарного потока в турбулентный. Введение этой величины обусловлено тем, что массообмен при ламинарном движении пренебрежимо мал, а следовательно, незначителен и теплообмен. Богданов ввел также в критериальное уравнение число Не, число Рг, отношение давлений р/ра и после обработки своих данных получил следующее соотношение  [c.54]

    Трейбал предложил [94]1 рассматривать массообмен н смесителе как процесс нестационарной диффузии от твердых сфер диаметром, равным среднему диаметру капель, находящихся внутри сплошной фазы. При этом может быть использована аналогия с нестационарным теплообменом в жесткой сфере, помещённой в среду с постоянной температурой. Известное для теплообмена решение Гребера приведено [94] в виде графической зависимости (рис. У.13) для определения эффективности ступени по Мерфи ( м.д —по дисперсной фазе). Помимо близкого к действительности допущения о полном перемешивании в сплошной фазе такое определение "м-д связано с рядом других упрощающих допущелий (одинаковый размер капель и постоянное время их пребывания отсутствие концевых эффектов, химического взаимодействия, сопротивления массообмену на поверхности раздела фаз), В полученной зависимости явления внутренней циркуляции жидкости в капле, многократной коалесценции и редиспергирования, а также прочие явления, осложняющие массообмен (по сравнению с его упрощенной моделью), учитыва- ш ются введением эффективно- д го коэффициента молекуляр- [c.294]


Смотреть страницы где упоминается термин Коэффициент массообмена, связь с коэффициентом теплообмена: [c.268]   
Дистилляция (1971) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Массообмен

Теплообмен коэффициенты



© 2025 chem21.info Реклама на сайте