Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологии на основе механической обработки

    Повышенная концентрация растворов химреагентов, сырой и подготовленной нефти, легких углеводородов (растворителей, нестабильного бензина, керосина), как правило, приурочена к узлам приготовления и закачки растворов на нефтяной, водной, углеводородной основе. Сюда следует относить узлы приготовления и закачки мицеллярных растворов, полимеров, силикатно-щелочных, кислотных и поверхностно-активных веществ. Перечень применяемых марок химреагентов в технологиях и их применения может быть самым разнообразным как по количеству, так и 1П0 объему. В связи с этим на узлах их приготовления и закачки образуются различные остатки в виде нефте-шлама, химшлама и твердых остатков. Аналогичное содержание остатков может быть и в сточной воде, применяемой для утилизации и закачки в пласт или других технологических целей. К наиболее трудоемким, с точки зрения утилизации остатков шлама, относятся токсичные твердые частицы. Они могут содержаться в твердых осадках при силикатно-щелочном заводнении с добавкой других интенсифицирующих химреагентов, тринатрийфосфата и в механических примесях, при сернокислотной и солянокислотной обработках. Твердые частицы обычно разделяются за счет гравитационного эффекта я выпадают в нижнюю часть технологических емкостей, которые необходимо периодически Чистить. Для сбора остатков (шлама) используют канализационные емкости, амбары или водовозы. В случае применения водовозов отходы вывозятся [c.382]


    В технологии различных силикатных материалов имеется много общего, поскольку физико-химические основы большинства силикатных производств сходны. Технологические схемы производства различных силикатов (керамических изделий, огнеупоров, вяжущих веществ), как правило, складываются из однотипных процессов и операций. К ним относятся чисто механические операции дробление, размол, смешение твердых материалов при подготовке сырьевой смеси и физико-химические процессы, происходящие при высокотемпературной обработке шихты, с образованием тех или иных минералов или их смесей. Подготовка сырьевой смеси в производстве силикатов должна обеспечить высокую интенсивность последующих высокотемпературных процессов обжига, спекания или плавления с получением материалов или изделий с заданными составом и свойствами. Для этого производятся тонкое измельчение твердых сырьевых материалов, точный расчет и дозировка их, тщательное перемешивание шихты, ее увлажнение и брикетирование или формование и сушка отформованных изделий, способствующая сохранению однородности шихты, а также формы изделия при обжиге (производство керамики). [c.102]

    Технологии на основе механической обработки [c.559]

    В книге изложены теоретические и практические сведения о технологии производства порошкового железа карбонильным методом и физико-химических свойствах этого материала. Впервые приводятся теоретические основы синтеза пентакарбонила железа и процесса получения карбонильного железа. Описано промышленное получение, термообработка и механическая обработка карбонильного железа. Особое внимание уделено описанию электромагнитных свойств этого материала и применению его в радиоэлектронике, порошковой металлургии и других отраслях техники. [c.2]

    Механическая обработка заготовок является основным методом получения деталей с повышенными требованиями к точности и шероховатости поверхностей. В химическом машиностроении наиболее распространенными операциями механической обработки являются сверление, точение, фрезерование и шлифование. На механической обработке и слесарно-сборочных работах занято более половины всех рабочих отрасли, поэтому механизации и автоматизации этих процессов уделяется большое внимание. Базой для повышения уровня механизации и автоматизации основных операций механической обработки, уменьшения трудоемкости и снижения себестоимости серийных изделий является разработка групповых технологических процессов, которые позволяют применить наиболее прогрессивное, высокопроизводительное оборудование, приспособления, методы получения точных деталей, характерные для массового и крупносерийного производства, в условиях производства мелкосерийного и даже единичного. Групповая технология является основой для широкого внедрения типовых и стандартных технологических процессов при изготовлении характерных унифицированных деталей и изделий отрасли, позволяет привлекать для проектирования технологии современные большие ЭВМ, в память которых заложены технические характеристики наиболее прогрессивного инструмента и другой технологической оснастки, т.е. создает хорошие предпосылки для внедрения автоматизированных систем технологической подготовки производства на заводах отрасли. Типовые технологические процессы разрабатываются с учетом опыта передовых предприятий, научных разработок специализированных НИИ и КБ как -химического машиностроения, так и смежных отраслей промышленности и зарубежных фирм. Сборники, атласы и альбомы типовых технологических процессов ускоряют и удешевляют технологическую подготовку производства при освоении выпуска новых изделий. Наиболее выгодной организационной формой внедрения групповой технологии являются замкнутые производственные участки, обеспечивающие достаточно полную загрузку оборудования. На заводах химического машиностроения такой организационной форме бальше всего соответствуют участки токарных станков в механических цехах, вертикальные и горизонтальные многошпиндельные полуавтоматы, гидрокопировальные полуавтоматы и станки с ЧПУ. При внедрении ПР на этих участках следует учитывать наличие у манипулятора движения, необходимого для загрузки заготовки в приспособление. В этом отношении проще всего загрузка вертикальных многошпиндельных полуавтоматов 4 (рис. 6), поскольку для установки заготовки 1 в патрон 3 достаточно простого опускания схвата 2. Такое движение имеют все ПР, [c.28]


    Первую группу методов защиты применяют на стадии изготовления металла, в процессе его термической и механической обработки. Разработка коррозионностойкого сплава — довольно сложный процесс, поскольку при этом приходится учитывать большое количество факторов, включая технологию изготовления сплавов, их литейные свойства, способность к свариванию и пр. Общую теорию коррозионностойкого легирования создал Н. Д. Томашов. Принципы легирования определяются природой металла-основы и условиями его эксплуатации. Повысить коррозионную стойкость сплава можно, влияя на три основных компонента, определяющих эффективность действия коррозионного элемента анодную поляризуемость, катодную поляризуемость, и омическое сопротивление. [c.112]

    Наряду с отмеченными выше положительными факторами применения системы ОСТ, следует отметить существенные недостатки, возникающие при использовании этой системы для нормирования точности изготовления деталей из пластмасс 1) отсутствие однозначного определения точности (известно, что мерой точности является единица допуска, одинаковое число единиц допуска во всем диапазоне размеров характеризует одинаковую точность при оценке в определенном же диапазоне размеров точности изготовления разными классами количество единиц допуска оказывается разным и, таким образом, нарушается основной метрологический принцип) 2) значительные скачки в абсолютных величинах допусков при переходе от одного интервала размеров к другому (если на границах использованы разные классы точности) 3) существенное различие в оценке точности изготовления гладких и межосевых размеров (в большинстве случаев допуски на межосевые размеры задаются отвлеченной, не связанной ни с чем величиной, постоянной во всем диапазоне размеров) 4) невозможность учета особенностей свойств и технологии переработки пластмасс (допуски системы ОСТ устанавливались на основе технологических возможностей процессов механической обработки, и, естественно, величины допусков и закономерности их изменения отражают особенности этих процессов). [c.102]

    Технология получения опытных образцов углеграфитовых материалов на основе наполнителя узких фракций и связующего ПБ заключается в следующем [18]. В качестве наполнителя используют отходы механической обработки заготовок искусственного графита, рассеянные на механическом встряхивателе в течение 15— 20 мин. Применение графита исключает усадку зерен наполнителя при последующей термической обработке зеленых заготовок. Связующее ПБ просеивают через сито 0,2 или 0,1 мм для удаления крупных агломератов частиц и смешивают с наполнителем сначала вручную, затем в барабанном смесителе в течение около 6 ч. [c.104]

    Диапазон их свойств необычайно велик от мягкого как свинец чистого железа до твердой как алмаз инструментальной стали, от динамного и трансформаторного листа с особыми магнитными свойствами до немагнитных сплавов железа, от износостойких специальных сталей до коррозионностойких и нержавеющих. Легированием и термической обработкой с использованием давления и излучения удается получать железные материалы с невероятными свойствами. И мы отнюдь не в конце, а лишь в начале грандиозного пути развития металлургии железа. Наука неустанно занята получением новых данных, способствующих совершенствованию и созданию новых способов получения и обработки материалов на основе железа. Ваша задача усвоить сегодняшний уровень знаний, чтобы завтра вместе со сталеплавильщиками, литейщиками, прокатчиками, кузнецами, технологами, занятыми механической и термической обработкой, способствовать техническому прогрессу в металлургии. X [c.197]

    В технологии различных силикатных материалов имеется много общего, поскольку физико-химические основы большинства силикатных производств сходны. Технологические схемы производства различных силикатов (керамических изделии, огнеупоров, вяжущих веществ), как правило, складываются из однотипных процессов и операций. Общими являются как чисто механические операции — дробление, размол, смешение твердых материалов при подготовке сырьевой смеси, так и фи-зико-химические процессы, происходящие при высокотемпературной обработке шихты, с образованием тех или иных минералов или их смесей. [c.352]

    Графит ПГ-50 получают по технологии, которая включает подготовку исходного сырья (кокс нефтяной пиролизный специальный марки КНПС, пек каменноугольный электродный марки А и хлорид натрия технический), получение пресс-порошка, формование заготовок на его основе, их термическую обработку (обжиг, графитация, газотермическая обработка) и механическую обработку для получения заготовок или изделий из них заданной формы, размеров и чистоты поверхности. [c.180]


    Отличительной особенностью осажденных катализаторов является, во-первых, то, что в основу технологии их приготовления положен метод соосаждения активных составляющих катализатора, а, во-вторых, то, что в составе катализатора отсутствует так называемый носитель, т. е. инертное твердое вещество, образующее самостоятельную фазу, на поверхность которого наносятся активные составляющие катализатора. Соосаждение составных компонентов катализатора приводит к образованию либо монолитной гелеобразной структуры, которой присуща механическая прочность, либо кристаллических осадков или дробленых частиц аморфной структуры, требующих дальнейшей обработки для превращения их в прочные гранулы катализатора. [c.316]

    В связи с развитием высокотемпературной техники (спекание легкоокисляющихся металлических сплавов, изготовленных методом порошковой металлургии, термическая обработка этих сплавов в вакууме, высокотемпературная химическая переработка твердых неорганических сернистых соединений, жидких и газообразных углеводородов) Днепропетровским трубным заводом им. В. И. Ленина совместно с Трубным институтом и Институтом металлургии им. А. А. Байкова АН СССР разработана на основе данных по механическим свойствам сплава и освоена технология изготовления труб из сплава № 2 размером 50 X 5 лл и выше методом прошивки гильз и их прокатки при высоких температурах. [c.325]

    Таким условиям в полной мере отвечает кварцевый песок, нашедший основное применение в качестве загрузки фильтров в технологии водоподготовки. Если такой материал взять за основу и решить вопрос регенерации, то задача сводится к приданию поверхности песка свойств, необходимых для загрузки коалесцирующих фильтров. В данном случае поверхность должна быть гидрофобной. После определенных поисков было найдено вещество, обеспечивающее высокую степень гидрофобизации поверхности зерен кварцевого песка. В результате его обработки по довольно простой технологии на поверхности зерен образуется мономолекулярный слой, обладающий высокой механической прочностью и стойкостью в среде углеводородов. Расход реагента по 100 %-ному продукту составляет 1,2—2 л на 1 м песка. [c.169]

    Технология металлизации изделий из пластмасс и пленок также включает предварительную подготовку поверхности изделий, главное назначение которой — создать на покрываемой поверхности шероховатость, обеспечивающую требуемую прочность сцепления покрытия с основой. С этой целью применяют механическую, химическую или физическую обработку, а также нанесение на обрабатываемую поверхность специальных пленок (с наполнителями и без них), обладающих хорошей адгезией как с материалом основы (пластмассы), так и с осаждаемым на нее металлом. [c.263]

    Потери драгоценных металлов, неизбежные при использовании ранее известных катализаторов, резко сокращены благодаря созданию механически прочных и коррозионно-устойчивых катализаторов на основе палладия. Совместно с Институтом металлургии им. А. А. Байкова АН СССР и Свердловским заводом по обработке цветных металлов разработана и внедрена в 1978 г. технология изготовления мембранных катализаторов в виде тонкостенных трубок из фольги. Реакторы с такими катализаторами [c.32]

    В современной технологии полупроводниковых приборов особое значение имеют методы химического воздействия на исходный кристалл кремния, которые позволяют формировать в нем разнородные области п- и р-типа, окисленные участки поверхности и т. п.), являющиеся активными и пассивными элементами структуры. К этим методам прежде всего относятся отмывка и травление, служащие для удаления с поверхности примесей и нарушенного слоя, вызванного механической обработкой, создания определенного рельефа на поверхности пластины и т. п. формированне стеклообразных пленок на основе 810а, полученных или методами термического окисления, или осаждением из газовой фазы в результате химической реакции. Важную роль в технологии играют методы эпитаксиального наращивания, позволяющие создавать слоистые монокристаллические структуры с разнообразными электрофизическими свойствами. Непременным этапом физико-химической обработки кристалла при изготовлении прибора служит диффузия примесей донорного и акцепторного типов, при П0М01ДИ которой формируются области эмиттера и базы в транзисторах, резисторы и другие элементы интегральной схемы. [c.96]

    На основе алюмофосфатной, алюмохромфосфатной, цинк-фосфатной и железофосфатной связок и шлаков медноннкеле-вого производства получают материалы с прочностью при сжатии 200—250 МПа. Такие составы используют также для крепления металлической аппаратуры к высоковольтным изоляторам. Для изготовления фильтрующих материалов применяют смесь керамзитового гравия, тонкомолотого наполнителя и СаО, а в качестве связующего — жидкое стекло. Предполагается улучшить технологию изделий из гипса путем орошения гипса перед формованием раствором силиката натрия. Получаемые материалы позволяют осуществлять механическую обработку сразу после формования и имеют повышенную огне- и водостойкость. [c.141]

    Технология изготовления этих материалов включает операции смешивания металлических порошков, их прессования и спекания, пропитку полученного пористого каркаса самосмазывающимпся композициями на основе полимеров, калибровку или механическую обработку резанием с целью получения окончательных размеров и заданной шероховатости поверхности. [c.83]

    Характерными деталями отрасли являются фланцы приварные встык, бурты и кольца. В изделиях химического машиностроения широко применяют фланцы и кольца диаметрами от 50 мм до 4 м и более. Годовая потребность в таких деталях исчисляется сотнями тысяч штук. Традиционная технология получения фланцев и колец больших диаметров основывается на ковке с чередованием операций осадки, прошивки и раскатки. На операциях ковки и последующей механической обработки значительна доля ручного труда, много металла уходит в отходы. Коренное измейение технологии обеспечивает применение специальных бандажераскатных станов, которые не только во много раз повышают производительность обработки, но и значительно увеличивают точность образуемого профиля фланцев и колец, снижают расход металла, создают основу для автоматизации всего процесса путем применения ПР для загрузки заготовок и снятия готовых изделий. [c.27]

    В настоящее время инструментальные материалы и режущие инструменты из них достигли высокой степени совершенства. Существенно увеличить параметры режима обработки при использовании традиционных операций и технологических процессов за счет только применения нового материала инструмента или усовершенствования геометрии его режущей части не удается. В то же время перед машиностроением постоянно выдвигаются все новые задачи по повышению производительности труда и качества выпускаемой продукции. Для создания РТК и ГАПов не всегда можно довольствоваться достигнутым уровнем технологии. Существующие операции точения, фрезерования и сверления подчас совершенно непригодны для применения в автоматизированных системах в силу малой лроизводительности, неустойчивости или невозможности автоматизации. Обработка многих новых конструкционных материалов со специальными свойствами (коррозионностойких, немагнитных, материалов на основе металло- и минералокерамики, пластмасс с особыми физико-механическими свойствами) существующими методами сильно затруднена или невозможна. Поэтому в нашей стране и за рубежом наряду р совершенствованием конструкции режущих инструментов и применением новых инструментальных материалов и СОЖ ведутся исследования по созданию и применению новых средств и методов обработки. Создаются методы, основанные на воздействии на обрабатываемый материал одного из видов энергии — механической, электрической, химической, тепловой или их комбинаций обработка может производиться одним инструментом или в сочетании с дополнительными устройствами. Традиционные методы обработки основаны на использовании только одного воздействия на материал срезаемого слоя. Например, механическая обработка резанием и давлением использует только механическое воздействие на заготовку рабочих граней инструмента, электроискровая обработка использует электроэрозионное воздействие электрического тока, химическая обработка — размерное глубокое травление, лучевые методы основаны-на использовании для съема металла воздействия сфокусированного луча света или пучка электронов с вьюокой плотностью энергии. [c.80]

    Г рупповая технология применима не только при механической обработке заготовок, но и при сборке изделий. В основу групповой технологии сборки положены типовые сборочные операции, переходы и движения, сходные по назначению, а также типовые схемы сборочных приспособлений, обеспечивающие условия собираемости изделий или их частей. Групповые технологические процессы сборки основываются на классификации аппаратов, машин, сборочных единиц и типовых соединений с учетом их конструктивных особенностей. Собираемые изделия и сборочные единицы классифицируют по общности их служебного назначения, видам соединений и количеству деталей, входящих в сборочную единицу. Из всего много- [c.91]

    Только немногие отрасли промышленности перерабатыват высокомолекулярные природные материалы без применения каких-либо химико-технологических процессов, методами чисто механической технологии. Такова, например, деревообделочная промышленность. Гораздо многочисленнее отрасли промышленности, где при переработке природных высокомолекулярных материалов сочетаются процессы меха-чической и химической технологии. При этом, например, в производстве хлопчатобумажных, шерстяных и льняных текстильных волокон, натурального шелка, в меховой и кожевенной промышленности преобладают процессы механической технологии, однако для выпуска готового изделия необходимо проведение и таких важных химико-технологических процессов, как крашение волокон, тканей, меха, окраска и дубление кожи и т. д. В целлюлозно-бумажной промышленности, частично в резиновой (на основе натурального каучука), в производстве эфироцеллюлозных пластических масс, кинопленки, искусственного волокна, наоборот, преобладают химико-технологические процессы обработки. [c.18]

    Применение алюминия и его соединений. Благодаря большой распространенности и доступности алюминия, падежным способам его получения, а также получения соединений и сплавов с участием А1, он нашел широчайшее применение в современной технике и промышленности. Этому также способствуют малая плотность алюминия (2,7 г/см ), высокая электрическая проводимость, достаточная механическая прочность и низкая себестоимость. Металлический алюминий применяется для алюмотермии, изготовления проводов и посуды. Благодаря низкому сечению захвата тепловых нейтронов и малой чувствительности к радиации алюминий применяется как конструкционный материал для ядернвлх реакторов, в основном с водяным охлаждением. Сплавы на основе алюминия занимают второе место после стали и чугуна. Они применяются в ракетной технике, в авиа-, авто-, судо- и вагоностроении, приборостроении, в химическом аппаратостроении, в строительстве н т. д. Достоинство всех алюминиевых сплавов — малая плотность, высокая удельная прочность, удовлетворительная стойкость против коррозии, недефицит-ность, простота технологии и обработки по сравнению с другими цветными сплавами. [c.155]

    Мех. активация твердых тел заключается в создании долгоживущих нарушений атомной структуры с целью изменения структурно-чувствит. св-в в-ва, прежде всего реакц. способности. Чаще всего активируют порошковые материалы мех. обработка порошков сопровождается накоплением точечных дефектов, дислокаций, аморфных областей, увеличением площади межзеренных границ, образованием новых пов-стей (см. Дефекты). Энергетич. выходы образования структурных дефектов, как правило, не превышают 10 -10 моль/МДж. В результате мех. нарушения атомной структуры повышаются р-римость в-ва и скорость растворения, облегчаются р-ции с молекулами среды и др. твердыми телами, на десятки и сотни градусов снижаются т-ры твердофазного синтеза, термич. разложения, спекания. Механически активируют наполнители (графит и др.), фосфатные удобрения, прир. и синтетич. полимеры и др. материалы. Мех. активация увлажненного диоксида кремния и нек-рьк др. оксидов придает им вяжущие св-ва и является основой безобжиговой технологии жаропрочных материалов. [c.77]

    Следует отметить, что ориентация на разработку специальных технико-технологических решений значительно растянет сроки внедрения этого метода. Вместе с тем из. детального рассмотрения технологии обработки ОБР отверждающими составами следует, что ее основу составляет смешение компонетов и гидротранспорт жидких сред. Эти же функции выполняет и ряд используемого в бурении серийно освоенного оборудования (гидравлические и механические перемешиватели, центробежные и поршневые насосы, гидровакуумные смесители, цементировочное оборудование). Таким образом, в технологическом аспекте обоснованной представляется ориентация на применение используемого в буренв Шбрудования буровой. [c.328]

    Композиции, из которых создаются кревлнийорганические герметики, состоят из полимерной основы, наполнителей, различных добавок (пластификаторов, антиоксидантов и адгезионных компонентов), сшиваюш их агентов и катализаторов вулканизации. При приготовлении композиций, отверждаюш ихся на холоду, обычно используют полимеры с концевыми ОН-группами и молекулярным весом от 30 ООО до 100 ООО. При использовании полимеров с меньпшм молекулярным весом физико-механические свойства вулканизатов ухудшаются, а с большим — улучшаются, однако технология обработки их усложняется [45]. Для повышения механической прочности вулканизаты усиливают наполнителями. Кроме того, отдельные наполнители способны придавать композиции специфические свойства. Так, введение окиси цинка, циркония и хрома придает мат риалу теплопроводные свойства графит, сажа и окислы металлов повышают его электропроводность. [c.79]

    Стеклянное волокно придает пресс-материалу повышенные физико-механические свойства, зависящие от размеров стеклянного волокна, его толщины, предварительной обработки и технологии изготовления пресс-материала. Стекловолокнит обладает лучшими электроизоляционными и механическими свойствами и более высокой водостойкостью, чем волокнит и асбоволокнит. Стекловолокнит получают как на основе ФФС, модифицированной ПВБ, так и на эпоксифенолоформальдегидном связующем. В зависимости от марки стекловолокнита и назначения изделий содержание смолы на стеклянном волокне составляет 25—45% (масс.). [c.208]

    Второй путь — обработка бумаги (соответственно целлюлозы) реагентами, вызывающими сшивание макромолекул. Различные примеры такого сшивания подробно описаны в работах, посвященных приданию водоустойчивости текстильным материалам, и поскольку мы останавливаемся в этой книге не на деталях технологии, а на физико-химических основах ее, здесь достаточн указать, что принципы сшивания целлюлозных материалов во всех случаях одинаковы. Сшивание макромолекул полимера приводит к снижению степени набухания его и к повышению механической прочности материала в набухшем состоянии. Особое значение сшивание имеет для бумаг, которые должны сохранять линейные раз меры после влажностных обработок. Образующиеся мостичные связи между макромолекулами снижают релаксационные процессы вследствие уменьшения молекулярной подвижности. [c.197]

    Ацетобутиратцеллюлозные материалы получаются из продукта обработки целлюлозы смесью уксусной и масляной кислот и их ангидридов в присутствии катализаторов (серной кислоты). Технологические и физико-механические свойства этих материалов можно регулировать в широких пределах за счет изменения соотношений кислот ц их ангидридов. Технология изготовления ацетобутират-целлюлозы сходна с производством ацетилцеллюлозы. По своим свойствам и применению эти материалы также близки, но ацето-бутират более пластичен и текуч, чем ацетилцеллюлоза, поэтому и количество пластификатора в нем резко снижается. Ацетобутират с содержанием 10—15% уксусной кислоты и 35—40% масляной кислоты обычно пластифицируется смесью из метил- и этилфосфа-тов или другими более водостойкими нелетучими пластификаторами. Применяются также для разных назначений трифенил- и трикрезилфосфаты, метил- и бутилцеллозольв. Ацетобутират обла-.дает лучшей растворимостью и совмещаемостью с пластификаторами, чем ацетилцеллюлоза. Лаки на основе ацетобутиратцеллю-лозы обладают хорошей адгезией, а изделия — устойчивостью к действию атмосферных условий, водостойкостью и стабильностью размеров. Ацетобутират не совмещается с ацетилцеллюлозой. [c.52]

    Последние, однако, наряду с пластичностью обладают и высокоэластичностью, т. е. способностью к механически обра-тимы.м деформациям. Придание каучуку пластических свойств, достигаемое механической либо тепловой его обработкой, сохранение им этих свойств на всех этапах технологического процесса и, наконец, превращение его путем вулканизации в резину—высокоэластический материал, не обладающий пластичностью, является принципиальной основой всей современной технологии изготовления любых резиновых изделий или деталей. [c.28]

    Основные объекты газопромысловой технологии взаимосвязаны между собой, и в связи с этим неразрывность технологических процессов добычи и обработки природного газа как единой газогидродинамической системы заключается в следующем. Природный газ из скважины поступает на установки комплексной подготовки газа (УКПГ), предназначенные для сбора и промысловой обработки газа и конденсата (извлечение влаги и углеводородов, очистка от механических примесей) и составляющие совместно с газопромысловой сетью основу обустройства газового (газоконденсатного) месторождения. Согласно [10] в истории развития техники и технологии промысловой обработки газа можно выделить три основных этапа. [c.24]


Смотреть страницы где упоминается термин Технологии на основе механической обработки: [c.26]    [c.10]    [c.337]    [c.180]    [c.46]    [c.151]    [c.82]    [c.320]    [c.320]    [c.334]    [c.320]    [c.40]   
Смотреть главы в:

Растительный белок -> Технологии на основе механической обработки




ПОИСК







© 2025 chem21.info Реклама на сайте