Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ламинарное через зернистый слой

    Прохождение потока через канал хорошо изучено как в ламинарном, так и в турбулентном режиме. Протекание жидкости через зернистый слой исследовано в недостаточной степени, в особенности это относится к распределению скоростей потока по сечению. Чаще всего принимают, что жидкость равномерно распределяется по всему сечению слоя. Однако у стенок зерна располагаются не так, как в остальной части слоя, а более регулярно, [c.51]


    Реактор радиального нейтрализатора с 2-образным движением газов представляет собой три коаксиальные трубы (рис. 1). Стенки внутренней и кольцевой труб перфорированы, конец внутренней трубы заглушен. Таким образом, весь поступающий поток газа фильтруется через зернистый слой катализатора, попадает в кольцевой зазор с заглушенным передним торцом и выбрасывается в атмосферу через кольцевое отверстие в конце камеры. Приведем методику расчета аэродинамики аппарата в предположении, что течение в коллекторах является ламинарным. [c.81]

    Следует отметить, что при движении жидкости (газа) через зернистый слой турбулентность в нем развивается значительно раньше, чем при течении по трубам, причем между ламинарным и турбулентным режимами нет резкого перехода. Ламинарный режим практически существует примерно при Re < 50. В данном режиме для зернистого слоя X = A/Re [ср. с уравнениями (11,91) и (И,112)1. [c.104]

    В более ранней работе Касика и Хаппеля [103] эта же модель использована для расчета тепло- и массообмена в слое в области Не = 1001000, где при ламинарном гидродинамическом пограничном слое нельзя пренебрегать силами инерции и влиянием отрывного обтекания кормовой части сферы. Авторы [103] приняли, что вихри, образующиеся за каждой обтекаемой сферой, уменьшают свободный объем зернистого слоя, в котором движется жидкость, протекающая через зернистый слой. Соответственно эти затененные в кормовой части сфер участки должны быть исключены из объема условной сферы Хаппеля, в которой движется шар. Объем зон отрывного обтекания принимается в исследуемом интервале Ке постоянным. Его относительная величина зависит от доли незанятого объема е. В соответственно скорректированном объеме жидкой сферы, обтекающей отдельный элемент слоя, выделяется гидродинамический пограничный слой, в котором преобладают силы вязкости. В остальной области предполагается потенциальное течение жидкости. Распределение скоростей и концентраций в безразмерной форме подбирается в виде степенных многочленов, удовлетворяющих заданные граничные условия. При интегрировании дифференциальных уравнений переноса была также сделана оценка влияния неравновесного потока к поверхности сферы, который [c.386]

    Параллельный перенос фронта насыщения удаляемой примесью есть теоретическое допущение при рассмотрении реального процесса движения очищаемой жидкости через пористую массу в ламинарном режиме. Постоянная скорость движения жидкости в фильтрующем слое обеспечивается поддержанием некоторого перепада давления на фильтре, определяемого по известному уравнению фильтрации в зернистом слое [28] [c.64]


    В сыпучем зернистом слое твердого материала при прохождении через него жидкости образуются небольшие каналы неправильной формы. Движение жидкости через такие извилистые каналы, как правило, носит ламинарный характер. Сопротивление потоку в этом случае можно определить по уравнению Гагена — Пуазейля  [c.129]

    Режим движения потока через пористый или зернистый слой может быть ламинарным, переходным или турбулентным. Пределы, в которых существует тот или иной режим, характеризуются числовым значением критерия Рейнольдса. Следует помнить, что эти числовые пределы зависят от того, какой геометрический параметр взят в качестве определяющего линейного размера при подсчете Не обычно Ке относят либо к диаметру й самой гранулы, либо к эквивалентному диаметру поровых каналов, определяемому из формул (6.90) или (6.91). [c.219]

    ОА — ламинарная фильтрация через неподвижный зернистый слой АВ — турбулентный режим фильтрации через неподвижный зернистый слой  [c.578]

    Так, к идеальному вытеснению близок поток жидкости или газа через достаточно длинный аппарат, заполненный слоем зернистого материала (насадочная колонна, реактор с неподвижным слоем катализатора, шахтная печь). Зернистый слой интенсивно выравнивает поток. В меньшей степени можно применить эту модель к потоку в пустой трубе, особенно в ламинарном режиме (см. раздел 11). [c.133]

    К режиму идеального вытеснения довольно близко прохождение жидкости (а особенно газа) через неподвижный зернистый слой в узких длинных трубках (например, в трубках, заполненных катализатором). Нужно иметь в виду, что течение жидкости по пустым трубам, особенно если оно ламинарное, сильно отличается от идеального вытеснения. Это является следствием влияния профиля скоростей на оси трубы частицы потока обгоняют основную массу, а у стенок отстают, причем у самой стенки есть зона застоя, где скорость падает до нуля. Это положение схематически проиллюстрировано рис. 13.7. [c.60]

    Представим уч асток пористой перегородки с закупоренными порами в виде цилиндрического капилляра, заполненного твердыми частицами суспензии, которые образуют пористый слой. Учитывая ламинарный характер движения суспензии или промывной жидкости через такой капилляр, перепад давления на нем можно представить уравнением, характеризующим сопротивление зернистого слоя при движении через него жидкости [3]  [c.22]

    При движении жидкости через слой зернистого материала или насадки турбулентность развивается при значительно меньших, чем при движении жидкости по трубам, значениях Ке (так, ламинарный режим существует при Ке < 50). [c.122]

    Течение жидкости (газа) через пористые вещества происходит подобно течению через слои зернистых твердых веществ. Однако вследствие того, что уплотненное пористое вещество имеет сложную сеть каналов, трудно связать характеристику потока с размером частиц или площадью их поверхности подобно тому, как это делается для слоев зернистых твердых веществ. Тем не менее, общий вид зависимости падения давления от объемной скорости подобен по форме аналогичной зависимости для слоев зернистых твердых веществ, т. е. переход от ламинарного потока к турбулентному происходит постепенно. Следовательно, в эту зависимость должны быть включены факторы. вязкости и инерции. Уравнение для потока несжимаемой жидкости будет иметь вид  [c.174]

    При движении по полым трубам критическое значение соответствующее изменению характера движения, лежит вблизи 2300 (при больших значениях Яе устойчиво турбулентное движение, при меньших—ламинарное). При движении же через слой зернистого материала, вследствие резких изменений направления и скорости газа, критическое значение Яе много ниже. Кроме того, переход ламинарного движения в турбулентное для насадок проявляется не так резко, как в случае полых труб, а происходит в сравнительно широком интервале значений /<е (от 40 до 200). [c.68]

    Рассмотрим более подробно ламинарное движение жидкости через зернистый слой. Такой режим течения жидкости часто наблюдается в одном из распространенных процессов разделения неоднородных систем — фильтровании через пористую среду (слой осадка и отверстия фильтровальной перегородки). При малом диаметре пор и соответственно низком значении Re (меньшем критического) движение жидкости при фильтровании является ламинарным. Подставив X из уравнения (П,134а) и выражение (11,132) для Re Б уравнение (11,130), после элементарных преобразований получим [c.104]

    В слое (не считая решетки) от скорости ожижающего агента w (жидкости, газа) в незаполненном сечении аппарата. На рис. 1-21, а показана кривая идеального исевдоожижения моно-днсперсного слоя твердых частиц в аппарате постоянного поперечного сечения /j.. Восходящая ветвь ОА (прямая при ламинарном течении и кривая при других режимах) соответствует движению ожижающего агента через неподвижный зернистый слой. Абсцисса точки А w = w o) выражает скорость начала исевдоожижения. Горизонтальный участок АВ изображает псевдоожиженное состояние, характеризующееся равенством сил давления потока на слой твердых частиц и их веса здесь сохраняется Ар = onst. Абсцисса точки В выражает скорость начала уноса Wq. При скоростях W > w o твердые частицы выносятся потоком, вес слоя падает и, следовательно, уменьшается Ар. [c.83]


    О. м. Тодес с сотр. [147], воспользовавшись уравнением Эргана [543] для перепада давления при движении газа (жидкости) через неподвижный зернистый слой в широком диапазоне изменения критерия Не, охватывающем ламинарный и турбулентный режимы, приводят следующее начальное равенство  [c.81]

    В пограничном слое у стенки аппарата интенсивность этих конвекционных потоков должна естественно уменьшаться. Пограничный слой у стенки трубы должен быть в значительной части поверхности ламинарным. Кроме того, количество точек контакта на единицу поверхности между зернами и стенкой аппарата значительно меньше, чем между зернами соседних в радиальном направлении рядов (см. раздел 1.2), что также должно привести к повышению сопротивления теплопереносу у стенок аппарата в области малых значений Reg, где теплопроводность в значительной мере определяется переносом через твердую фазу и величиной контактов между зернами. Следует отметить, что на неизбежность наличия пленочного сопротивления при теплопередаче из аппаратов с зернистым слоем при движении в нем газа не обращалось надлежащего внимания. В значительной части работ, посвященных анализу теп-лоиерехода в зернистом слое, тепловое сопротивление было отнесено к переносу тепла из ядра газового потока к стенкам при бес- [c.366]

    Чтобы дать представление о действительном распределении скоростей газа в колонке, необходи.мо рассмотреть процесс движения потока через плотный слой зернистого материала. Хотя общая теория этого явления достаточно сложна, как указали Джемс и Мартин [1], хроматографическая колонка представляет собой в этом отношении простои случай, поскольку макроскопический поток можно считать текущим в одном направлении и ламинарным. [c.201]

    Как известно, выделение жидкой фазы из суспензии представляет собой вариант процесса фильтрации, осложненный наличием нестационарного поля гидравлических напоров в деформируемой зернистой среде. Условно процесс гидромеханического разделения суспензии в шнековом устройстве можно разделить на две стадии 1) фильтрование (сгущение суспензии до консистенции осадка) и 2) отжим сгущенного осадка, во время которого под действием сил давления происходит выжимание жидкости из межзернового пространства между частицами, уплотняющегося под действием шнека. Для анализа работы первой стадии фильтрования применим следующую модель процесса. Движение суспензии в кольцевом зазоре зоны фильтрования шнекового устройства ламинарное (Не < 0,2). На внутренней стенке в зазоре между шнеком и фильтрующим корпу-сом образуется слой осадка, через который ]фильтруется жидкая фаза. Суснензия при своем движении вдоль слоя осадка постепенно сгущается и достигает в конце зоны фильтрования консистенции осадка, который собирается в зазоре между шнеком и фильтрующим корпусом. Будем считать, что конечная длина зоны фильтрования определяется достижением" в "суспензии значенияТпорозности 8. [c.233]


Смотреть страницы где упоминается термин Ламинарное через зернистый слой: [c.405]   
Основные процессы и аппараты Изд10 (2004) -- [ c.4 , c.105 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.107 , c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Ламинарный слой

Слой зернистый Слой зернистый



© 2025 chem21.info Реклама на сайте