Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучение тепловое степень

    Таким образом, при контроле тепловым методом необходимо учитывать зависимость приходящего к преобразователю излучения от степени черноты контролируемого объекта (5.6) и спектра (5.7), направление нормали его поверхности относительно линии визирования [c.176]

    Над Западной Европой и промышленными районами Северной Америки аэрозоль в зоне интенсивного турбулентного обмена имеет индустриальное происхождение и обладает сильным поглощением в области спектра 2,6—3,5 мкм и в спектральном диапазоне 7,2—25 мкм. Максимумы в полосах поглощения промышленного аэрозоля наблюдаются на длинах волн 2,9 9 и 18 мкм, в окрестности которых происходит наиболее заметная трансформация спектральных интенсивностей теплового излучения. Увеличение степени замутненности атмосферы приводит к уменьшению интенсивности восходящего излучения на всех зенитных углах. При постоянстве оптической толщины аэрозоля в вертикальном столбе [c.197]


    Хотя зачастую излучение и конвекция действуют одновременно, анализ задач, в которых учитывается только теплообмен излучением, позволит более корректно описать характеристики систем, поведение которых частично либо полностью определяется излучением. Математический анализ может опираться на приведенные в гл. 2 допущения, при этом допущения 3 и 10 должны быть видоизменены. Согласно допущению 3 коэффициент теплоотдачи на поверхности ребра — постоянный. В то же время очевидно, что в условиях космоса часть поверхности ребра может быть обращена в сторону стока тепла, а часть — в противоположную. Если отбросить указанное допущение, то анализ сведется только к рассмотрению переноса излучения между различными точками поверхности ребра и окружающим пространством. Отказ от допущения 3 снимает также допущение 10, согласно которому тепловой поток, отводимый от поверхности ребра, пропорционален разности температур 0= —4, поскольку в случае излучения тепловой поток пропорционален разности четвертых степеней температур. [c.148]

    Отражательную способность материалов по отношению к тепловому излучению характеризует степень черноты поверхности е, представляющая собой отношение излучательной способности данной поверхности к излучательной способности поверхности абсолютно черного тела. [c.100]

    Под словами черное тело следует понимать тело, которое поглощает все тепловое излучение и не отражает тепловых лучей. Согласно Кирхгофу, черное тело излучает при определенной температуре максимум возможных лучей, т. е. происходит так называемое черное лучеиспускание. В этом случае говорят, что тело обладает способностью поглощения, или степенью черноты, или относительным поглощением е = 1. В практике не встречаются абсолютно черные тела, так как все тела излучают или поглощают меньше энергии, чем абсолютно черное тело при той же температуре. Относительная поглощаемость тел в данном случае меньше единицы. Такого рода тела называются серыми телами. [c.128]

    Закон Стефана — Больцмана (закон четвертых степеней) устанавливает, что энергия полного теплового излучения Е пропор- [c.28]

    Закон Стефана — Больцмана (закон четвертых степеней) — устанавливает, что энергия полного теплового излучения Е пропорциональна четвертой степени температуры Т. Для технических расчетов уравнение имеет следующий вид  [c.59]

    Масштаб теплового излучения обсуждается ниже. Здесь же отметим, что все пламена были в той или иной степени дымными. Пламена при горении СПГ менее задымлены, чем пламена СНГ, а последние, в свою очередь, менее задымлены, чем пламена от керосина. [c.145]


    Из-за действия теплового излучения поражение той или иной степени тяжести или смерть могут произойти далеко за пределами вычисленного радиуса. Этот аспект будет обсуждаться ниже. [c.159]

    ЭТО обмен энергией и может быть определено количественно. Законы распространения теплового излучения подобны законам распространения света. Например, тела, отражающие свет, отражают и тепловое излучение. Однако существует значительное различие в степени прозрачности тел для света и теплового излучения. Примером этого может служить хорошо известный "парниковый эффект". [c.168]

    Интенсивность излучения, обозначенная здесь символом количественно определяется как мощность, излучаемая с единичной площади источника (размерность - Дж/(м2 с)). Интенсивность теплового излучения тела является функцией его абсолютной температуры Тд, возведенной в четвертую степень (Тд)", и его излучательной способности, представляющей собой долю излучения по отношению к испускаемой "черным телом" или идеальным источником тепла при той же температуре. Противоположностью черного тела является зеркало, у которого излучательная способность приближается к нулю. [c.168]

    Степень повреждения кожи при воздействии высоких температур зависит от теплового излучения. При слабом тепловом излучении будет повреждаться только эпидермис на глубину 1 мм. Более интенсивный тепловой поток может привести к поражению не только эпидермиса, но и дермы, а излучение еще большей интенсивности будет воздействовать и на подкожный слой. Эти три уровня в общем-то и соответствуют установленным категориям ожогов 1, 2 и 3 -й степеней. [c.170]

    Хотя представленные уравнения и дают возможность оценить интенсивность падающего излучения и полный тепловой импульс с приемлемой степенью точности, надо подчеркнуть, что в реальной обстановке излучение падает на трехмерные тела. Поэтому интенсивность и импульс, выраженные на единицу площади поверхности, в целом будут меньше, по крайней мере в 2 раза. Если действию излучения подвергается неподвижная пластина, обращенная одной из лицевых граней на 90° к оси падающего излучения (предполагается пучок параллельных лучей), то в таком случае одна половина ее поверхности, обращенная к падающему излучению, будет принимать тепловой поток, а другая половина (тыльная сторона) - не будет. Таким образом, интенсивность и импульс. [c.183]

    Эффект ослабления уже отмечался выше. Вопрос этот сложен. Сложность здесь заключается в том, что способность атмосферы ослаблять тепловое излучение неодинакова в разных местах, в течение суток и даже часа. Одна крайняя ситуация - это условия, соответствующие большой высоте и ясной морозной погоде другая - тропический муссон. Кроме того, осложняет дело тот факт, что излучение различных длин волн ослабляется в разной степени. [c.185]

    Отношение е = С/Сд, которое и меняется в пределах 0—1, называется относительной излучательной способностью, или степенью черноты тела. С введением понятия степень черноты тела закон теплового излучения серых тел (6.24) целесообразно выражать так  [c.128]

    Отношение интенсивности теплового излучения данного тела к излучению абсолютно черного тела при той же температуре называется степенью его черноты е очевидно, что е < 1. Для многих твердых тел величина 8 близка к единице, однако поглощательная или соответственно излучательная способность газов много меньше. Она существенно зависит от толщины слоя газа и его состава. Установлено, что при температурах пламени, как правило, заметно излучают трех- и многоатомные газы, среди них для нас важнейшие — двуокись углерода и водяной пар. Излучение таких газов, как N2, О. и Н,, незначительно. С повышением температуры величина е для излучающих газов уменьшается приблизительно обратно пропорционально — Т >°. Поэтому зависимость излу-чательной способности газа от температуры слабее, чем для абсолютно черного тела она пропорциональна [c.110]

    Это,. так называемое обратное излучение свода в некоторой степени выравнивает тепловую нагрузку радиантных труб, однако неравномерность поглощения тепла различными участками верхнего и нижнего рядов радиантных труб по-прежнему сохраняется, так как вследствие более высокой температуры в топке интенсивность потока лучей из топки значительно выше интенсивности потока лучей от свода. [c.517]

    Таким образом, даже ископаемые ресурсы одного и того же вида по своей качественной характеристике существенно различаются между собой. Тем более сложно сопоставлять ресурсы невозобновляемых топлив и ядерной энергии с возобновляемыми источниками энергии. При этом если ядерное топливо характеризуется высокой степенью концентрации энергии (при делении 1 г урана выделяется 82 ГДж тепловой энергии), то возобновляемые источники энергии характеризуются низкой плотностью и рассредоточенностью энергетического потока. Так, средняя интенсивность солнечного излучения на поверхности Земли оценивается в 160 Вт/м , а средняя плотность энергии, которая может быть получена за счет использования лесного покрова Земли, составляет 0,2 Вт/м [7, 8]. [c.13]


    Экспериментальные данные показывают, что в наиболее важном диапазоне длин волн теплового излучения от 1 до 8 мкм степень черноты пламени и различных материалов обычно колеблется в зависимости от температуры в пределах 0,3—0,9. Поскольку отдельные элементы любой излучающей системы имеют неодинаковые спектральные характеристики излучения, постольку в порядке переизлучения неизбежен процесс усреднения спектральных свойств падающего на поверхность нагрева излучения. [c.65]

    Молекулярные спектры. В молекулярных спектрах также наблюдаются дискретные изменения энергии. Излучение с частотой 10 —Гц (10 — 10 см ) может вызвать вращение молекул газа. Вращательный импульс квантован (вращательное квантовое число У), количество энергии (около 150 кал-моль" ) зависит от момента инерции молекулы и является величиной одного порядка с тепловой энергией та НТ 2 ЪОО кал-моль- на одну степень свободы при Т = 300 К). Вращательные спектры наблюдают при помощи микроволновой техники (тяжелые молекулы) или методов инфракрасной спектроскопии (более легкие молекулы). Для аналитических целей они имеют небольшое значение. [c.178]

    Содержащийся в воздухе водяной пар (наряду с углекислым газом) играет громадную роль в тепловом балансе земной поверхности он пропускает большую часть солнечных лучей, но в значительной степени задерживает обратное тепловое излучение Земли и таким образом способствует сохранению ею тепла. [c.144]

    Причем / реактивное включает в себя и / абсорбированное, т. е. и потери в диэлектрике. Потери в полимерных диэлектриках силь-но зависят от частоты, и далеко не все полимеры могут применяться при СВЧ. Связь этих характеристик со строением полимера можно проследить по табл. 15.12, в которой приведено только ограниченное число полимеров для иллюстрации (эти данные для многих полимеров имеются в специальной справочной литературе). Радиоактивное излучение влияет и на физико-механические и на электрические свойства, но в меньшей степени подвержены этому воздействию полимеры, содержащие циклы бензольных колец. Полимеры, содержащие сопряженные двойные связи не только между атомами углерода, но и азота, обладают полупроводниковыми свойствами. Некоторые полимеры получают свойства полупроводников в результате соответствующей тепловой обработки — [c.503]

    Этот анализ аналогичен анализу теплового баланса электрода (катода), с той разницей, что потери с боковой поверхности вследствие передачи тепла не излучением, а теплопроводностью пропорциональны не четвертой, а первой степени температуры рассматриваемого элементарного объема. При этом также учтены соображения о незначительности конвективного теплообмена в лунке. Анализ приводит также к выводу, что глубина лунки Н при данных размерах печи пропорциональна скорости плавки, т. е. току или мощности дуги. Из этого следует, что установившийся процесс кристаллизации слитка может начаться только тогда, когда лунка достигнет глубины Я, соответствующей данной мощности. [c.198]

    По закону Стефана— Больцмана энергия полного теплового излучения Е пропорциональна абсолютной температуре Т в четвертой степени .  [c.374]

    С учетом собственного излучения диафрагмы радиометра при пр-мощи коэффициента р= соб/[<7] (коэффициент собственного излучения) и обозначая степень черноты диафрагмы через ер, тепловой поток, который радиометр принял бы при температуре передней поверхности [c.156]

    Пример 4.10. Ребро с отводом тепла излучением. Кзнструктивный. расчет. Радиальное ребро прямоугольного профиля имеет толщину в основании 6,35 мм, а внутренний диаметр 100 мм. Ребро изготовлено из материала с коэффициентом теплопроводности 86 Вт/(м-°С) и степенью черноты 0,85. Температура в основании ребра равна 170°С, Ребро должно отводить излучением тепловой поток 90 Вт. Излучение происходит с одной стороны ребра в свободное пространство, поглощение излучения из окружающей среды отсутствует. [c.188]

    Свечение пламени вызывается в основном термическим излучением, происходящим в результате теплового возбуждения зтомов, и в меньшей степени химическим излучением (люминесценция). Интенсивность термического излучения зависит от способности излучающих веществ поглощать свет. [c.124]

    В. Поглощательные и излучательные характеристики. Поглощательная способность системы поверхностей (значение ее заключено между О и 1) определяет долю падаю-нгего излучения, поглощенную системой поверхностей. Степень черноты (излучательная способность — значение ее тоже заключено между О и 1) определяет, какая доля излучения черного тела в действительности излучается системой поверхностей. Чем определяются эти величины Очевидно, они зависят от используемой системы поверхностей. материала, из которого она изготовлена, его структуры, определяемой обработкой, толщиной окисных пленок, неровностями и т. д. Если структура поверхности стабильна (это не всегда имеет место), то радиационные характеристики рассматривают как функции термодинамического состояния, определяемого температурой Т.,. Более того, характеристики зависят от природы теплового и.злучения направления и длины волны, а иногда и поляризации. [c.454]

    Для и 1мереиия интегральной степени черноты можно использовать детектор, которым воспринимает весь падающий на иего радиационный тепловой ноток. Можно наблюдать плоский илн полусферический образец, можно также проводить калориметрические измерения, нагревая образец, помещенный в низкотемпературную полость. Подобным образом можно проводить и калориметрические измерения поглощательной способности, облучая образец в1,1С()К()температурным излучением черного тела. [c.457]

    Распространению теплового излучения в порошках препятствует, вероятно, экранирующее действие частиц порошка, образующих систему малоэффективных (главным образом из-за прозрачности порошков), но многочисленных экранов. В пространстве, заполненном п экранами, лучистый теплообмен, как это следует из уравнения (33), пропорционален Vn+1, уменьшается с увеличением расстояния между граничными поверхностями и почти не зависит от степени их черноты [128]. Установлено, что суммарный тепловой поток через вакуумнопорошковую изоляцию пропорционален толщине слоя изоляции, поэтому свойства ее принято характеризовать эффективным коэффициентом теплопроводности, являющимся функцией температуры. Обычно пользуются средних эффективным, или кажущимся, коэффициентом теплопроводности в определенном температурном диапазоне. Кажущийся коэффициент теплопроводности А, при толщине слоя изоляции более 2—3 см. практически не зависит от толщины и почти не зависит от степени черноты граничных поверхностей. При меньшей толщине коэффициент возрастает из-за непосредственного проникновения излучения сквозь относительно небольшое число полупрозрачных частиц. С увеличением плотности проницаемость порошков снижается и зависимость коэффициента теплопроводности от степени черноты становится более слабой. [c.115]

    Пример VI. 20. Определить тепловые потери за счет конвекции и излучения для паропровода с наружным диаметром d = = 0,2 м. Температура насыщенного пара /п = 280°С, температура окружающей среды /в = 25° С степень черноты материала xpyI6o-провода е = 0,8. [c.169]

    Излучательная, поглощательная и отражательная способности. Тепловое излучение реального тела меньше теплового излучения абсолютно черного тела при той же температуре. Для определения излучательной способности реального тела по закону Стефана — Больцмана вводится так называемый коэффии иент черноты тела, или степень черноты е. Он определяется как отношение потока теплового излучения, испускаемого реальным телом, к потоку теплового излучения, испускаемого абсолютно черным телом при той же температуре. Абсолютно черное тело поглощает всю падающую на него энергию излучения, в то время как реальное тело отражает часть этой энергии, так что можно ввести коэффициент поглощения, аналогичный коэффициенту чер-иоты тела. Для теплового излучения при любой данной температуре коэффициенты черноты тела и поглощения одинаковы. [c.43]

    В космическом пространстве тепло может рассеиваться только за счет теплового излучения. Поэтому отвод тепла в цикле энергетической установки, вырабатывающей даже лишь несколько киловатт энергетической мощности, уже является серьезной проблемой. Поток излучаемого теила пропорционален четвертой степени температуры. Чтобы использовать это, предполагается создавать энергетические установки со столь высокой температурой цикла, что поверхность радиатора будет раскалена докрасна. Но даже и нри таких условиях весьма трудно создать радиаторы, размеры которых находились бы в приемлемых пределах для запускаемого с Земли корабля. Для примера рассмотрим орбитальную телевизионную релейную станцию, поз-воляюш,ую принимать передачи непосредственно па доманише приемники. Подобная станция в зависимости от величины обслуживаемого района, числа каналов и некоторых других факторов должна иметь мощность от 20 до 1000 кет. [c.259]

    Исследовано влияние СВЧ-излучения на промышленные оксидные (К- 6у, К-24и, ИМ-2204) и металлические (Рс1 и N1) катализаторы. Предложен дополнительный критерий подбора катализаторов для проведения эндотермических реакций, базирующийся на степени трансформации электромагнитной энергии веществом катализатора в тепловую. Исследовано явления электромагнитной разработки катализатора, заключающейся в циютчном воздействии СВЧ-излучения. [c.5]

    В атомно-абсорбционном анализе анализируемое вещество под действием тепловой энергии разлагается на атомы. Этот процесс называют атомиза-цией, т. е. переведением вещества в парообразное состояние, при котором определяемые элементы находятся в виде свободных атомов, способных к поглощению света. Излучение и поглощение света под воздействием внешней энергии связаны с процессами перехода атомов из одного стационарного состояния (/, ,) в другое (к, Возбуждаясь, атомы переходят в стациотарное состояние к с энергией и затем, возвращаясь в исходное основное (невозбужденное) состояние I с энергией испускают свет с частотой /1.. Излучательные переходы осуществляются спонтанно без какого-либо внешнего воздействия. Повышение температуры излучающего облака в значительной степени сказывается на увеличении в нем концентрации возбужденных атомов, на интенсивности спектральных линий и, следовательно, на чувствительности атомно-эмиссионного спектрального анализа. [c.698]

    Радиоак1ивное излучение влияет и на физико-механические свойства, и на электрические свойства, но в меньшей степени подвержены этому воадействию полимеры, содержащие циклы бензольных колец. Полимеры, содержащие сопряженные двойные связи не только между атомами углерода, но и азота, обладают полупроводниковыми свойствами. Некоторые полимеры получают свойства полупроводников в результате соответствующей тепловой обработки — пиролизаты. Примером такого полимера может служить полиакрилонитрил  [c.520]

    При определении степени черноты ег или коэффициентов теплоотдачи излучением от трехатомиых газов и водяного пара [1, с. 478] необходимо знать число вое значение параметра р-з. При этом предполагается, что длина пути всех тепловых лучей до поглощающего энергию элемента стенки одинакова и равна тс 1ЛщИ Не газового слоя 5. [c.381]

    Значительные успехи в производстве и применении огнеупорных мате-рИ1алов позволили в корне изменить конструкцию печей. Широкое применение изоляционного кирпича и монолитных огнеупорных материалов дало возможность в значительной степени отказаться от тяжелых подвесных стенок. Легкость современных огнеупоров также в большой мере способствовала уменьшению общего веса конструкций печи. Кроме того, превосходные теплоизоляционные свойства современных легковесных огнеупорных материалов — кирпича и монолитных масс — обеспечили значительное уменьшение потерь тепла излучением от кожуХа печи. Опыт эксплуатации показывает, что потери епла излучением удается снизить до 1 % от общей тепловой мощности печи без чрезмерного удорой ания изоляции. Детальные исследования рациональных методов применения современных огнеупорных материалов, проведенные конструкторами, также привели к значительному снижению расходов на содержание и текущий ремонт огнеупорной кладки современных нефтезаводских печей. [c.71]

    При промышленном использовании радиационных процессов облучение нефтяного сырья тепловыми нейтронами может вызвать трудности, связанные с наведенной или искусственной радиоактивностью. Эта важная сторона радиационных технологических процессов будет рассмотрена дальше. Обычные формы остаточной радиации сильно осложняют последующее эффективное использование получаемых продуктов. Для достижения максимальной эффективности поступающее излучение должно в минимальной степени поглощаться стенками реактора и в максимальной — перерабатываемым сырьем. Применительно к парофазным реакциям в системах высокого давления электромагнитное излучение удовлетворяет первому из этих требований, но не удовлетворяет второму. Для излучения в виде элементарных частиц справедливо обратное положение поглощение стенками аппаратуры настолько интенсивно, что возникает необходимость к разработке специальных конструкций. На рис. 1 представлена специальная установка, сконструированная в исследовательском центре фирмы Эссо , для облучения газов под высоким давлением (до 70 ат) непрерывно обегающим пучком электронов, получаемым в электростатическом генераторе Ван-де-Граафа. Особенностью этой камеры является устройство непрерывно охлаждаемого окошка, оборудованного специальной решеткой, отверстия которой расположены под критическими углами для достижения максимальной проникающей способности движущегося йлектронного пучка. [c.115]

    Н. А. Захариков [206] рассмотрел в общем виде вопрос о теплоотдаче излучением ограниченного плоского слоя газа, состоящего из п изотермических слоев с постоянными оптическими свойствами. Решение общего уравнения дано для двух случаев когда слой относительно холодных газов располагается над слоем лламени и под ним. Степень черноты принималась для поверхности кладки постоянной и равной единице ( к =1). для поверхности нагрева е = 0,65 и для пламени = 0,3. Приведенные на рис. 175 и 176 результаты расчетов показывают, что по мере уменьшения температуры слоя газов над пламенем уменьшаются температура кладки и тепловой поток, причем в случае увеличении степени черноты этого слоя для t =1750° указанное выше явление усиливается, если температура слоя ниже температуры поверхности нагрева, и ослабляется при обратном соотношении. [c.312]

    Выше были рассмотрены случаи, когда температура кладки и ее собственное излучение зависели от теплового потока, направляемого иа кладку пламенем, заполняющим рабочее просг-ранство печи или его часть. Причем интенсивность теплового потока от пламени на кладку обязательно зависит от степени черноты пламени и, стало быть, его толщины. [c.338]


Смотреть страницы где упоминается термин Излучение тепловое степень: [c.434]    [c.464]    [c.90]    [c.38]    [c.119]    [c.295]   
Основные процессы и аппараты Изд10 (2004) -- [ c.679 , c.680 , c.690 ]




ПОИСК





Смотрите так же термины и статьи:

Тепловое излучение Излучение



© 2025 chem21.info Реклама на сайте