Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теории разрушения при кинетических процессах

    Эта книга могла бы также иметь название Кинетическая теория разрушения полимеров . Однако термин кинетическая теория нуждается в определении или по крайней мере некотором пояснении. В кинетической теории детально рассматривается влияние дискретности материи, движения и физических свойств молекул на макроскопическое поведение ансамбля в газообразном или другом состоянии вещества. В кинетической теории прочности приходится дополнительно учитывать упругие и неупругие деформации, химические реакции и физические процессы, типы различных этапов разрушения и их последовательность. [c.7]


    В кинетической теории разрушения предполагается связать конечные свойства напряженного образца с движением и свойствами молекул. Следовательно, кинетическая теория дает такое молекулярное описание деформирования микроскопически неоднородных анизотропных совокупностей цепей, с помощью которых могут быть выявлены критические процессы деформирования. Макроскопическое деформирование любой совокупности цепей включает деформацию, смещение и (или) переориентацию таких различных элементов надмолекулярной организации, как направления связей, сегменты цепей и кристаллические ламеллы. Молекулярную природу рассмотренных деформационных механизмов выявляют различные спектроско- [c.40]

    В данной главе приведен обзор общих представлений различных теорий разрушения, не имеющих явной связи с характерными свойствами молекулярных цепей, их конфигурационной и надмолекулярной организацией, тепловой и механической перестройкой. Это относится к классическим критериям ослабления материала и общим механическим моделям сплошных сред. Теории кинетических процессов разрушения учитывают вязкоупругое поведение полимерного материала, но вывод критериев разрушения не связан с подробным морфологическим анализом. Эти основополагающие теории тем не менее неоценимы для объяснения статистических неморфологических сторон процесса разрушения или его характеристики с точки зрения механики сплошных сред. [c.59]

    Теории разрушения при кинетических процессах [c.75]

    В отличие от теорий механики сплошных сред в теориях разрушения при молекулярных кинетических процесах учитывается дискретность частиц и элементов, составляющих материальное тело. В теории кинетических процессов предполагается непосредственно связать разрыв связей, смещение элементов и переход от отдельных актов воздействия на молекулярные цепи к макроскопической деформации, росту дефекта и разрушению структуры материала. [c.75]

    Первая группа теорий, которая будет рассмотрена впоследствии, содержит общее предположение о том, что макроскопическое ослабление — это кинетический процесс, что составляющие его отдельные акты вызваны термической активацией разрывов вторичных и (или) основных связей и что накопление этих актов приводит к образованию трещины и (или) разрыву нагруженного образца. В рамках этих теоретических представлений основные акты разрушения определяют обычным образом и без привлечения экспериментальных данных связывают с определенными морфологическими изменениями. Вторая группа теорий опирается на явные физические молекулярные повреждения, обнаруживаемые спектроскопическими методами и методом рассеяния рентгеновских лучей, которые будут описаны в гл. 7 и 8. Третья группа теорий, в которой [c.75]


    Итак, по кинетической теории разрушение твердых тел происходит следующим образом. Приложение к телу внешней нагрузки вызывает напряжение межатомных связей. При этом вследствие неоднородности строения реальных тел на субатомном уровне внешняя нагрузка распределяется неравномерно по связям возникают локальные перенапряжения. В этих местах энергия активации распада межатомных связей понижается особенно сильно. Именно в этих местах наиболее интенсивно идут процессы термофлуктуационного разрыва напряженных связей. Здесь фор-, мируются очаги разрушения, развитие которых и заканчивается распадом тела на части. [c.183]

    Многочисленные экспериментальные данные указывают на то, что при рассмотрении динамики накопления поврежденности материала и формирования очага разрушения необходимо учитывать коллективные явления, проявляющиеся во взаимном влиянии микродефектов. Известен ряд работ, рассматривающих характерные особенности коллективного поведения дефектов, когда наблюдаемые АЭ-сигналы зависят не только от вида источника, но и от условий взаимодействия совокупности дефектов. В соответствии с этим строятся математические модели, связывающие эволюцию дефектной структуры с параметрами наблюдаемой АЭ. Основой для разработки моделей АЭ при коллективном поведении микродефектов твердых тел может служить кинетическая теория разрушения. Эта теория рассматривает процессы возникновения, накопления и эволюции микро дефектов в материалах, а также формирование из микродефектов очага разрушения - макротрещины. Все эти процессы сопровождаются излучением акустической эмиссии. При математическом моделировании предполагается, что зарождение в материале микротрещины приводит к разгрузке близлежащего объема, что сопровождается излучением импульса АЭ. [c.175]

    Работы школы академика Журкова в которых разработана новая кинетическая теория разрушения, служат решению задачи целенаправленного повышения прочности. Механическая прочность твердых тел, т. е. способность противостоять, не разрушаясь, действию нагрузки, — важное и общее свойство. Рациональной мерой прочностных свойств является время, необходимое для разрушения, т. е. время пребывания тела в напряженном состоянии от момента нагружения до разрыва. Его принято называть долговечностью тела под нагрузкой. Все это позволяет, опираясь на общую закономерность теплового движения и теорию активационных процессов, рассматривать механическое разрушение твердых тел как временной процесс, в котором термические флуктуации играют решающую роль. [c.266]

    Чтобы корректно рассмотреть процесс разрыва связей как в полимерной цепи, так и в твердом теле, т. е. построить фо-нонную теорию разрушения, в ряде случаев необходимо рассматривать не тепловые колебания отдельных атомов, а распространение, взаимодействие и генерирование фононов — статистически независимых квазичастиц. Этим будет сделан следующий необходимый шаг в развитии общей кинетической концепции разрушения. [c.29]

    До развития представлений о разрушении как кинетическом процессе взаимосвязь между разрушением и деформированием рассматривалась односторонне обсуждалось только влияние процесса деформирования на развитие разрушения в предположении, что деформирование в этой взаимосвязи является ведущим, определяющим процессом, а разрушение — ведомым, зависимым от деформирования процессом. Подчеркивалось, что всякому разрушению, в том числе и хрупкому, всегда предшествует пластическая деформация. Она и является той причиной, которая вызывает в телах локальные перенапряжения, приводящие к образованию зародышевых трещин. Это предположение, высказанное на основании исследований деформирования и разрушения кристаллов еще около 1930 г. [980—983], получило дальнейшее развитие в работе [984], где была оценена концентрация напряжений у фронта заторможенного сдвига, а также и в дислокационных теориях разрушения, развитых позднее. К настоящему времени различными авторами предложено много дислокационных схем образования первичных зародышевых [c.493]

    Согласно этой теории разрушение тела рассматривается как некоторый кинетический процесс, а основной экспериментальной характеристикой сопротивления материала статическому разрушению является механическая долговечность т — время от момента приложения постоянного напряжения до момента разрушения. [c.75]

    Радиационные воздействия могут вызывать и обратимые изменения физических свойств полимеров, наблюдающиеся только под пучком. Так, при облучении стеклообразных полимеров и резин было обнаружено обратимое ускорение механических релаксационных процессов [215]. Была развита теория этого явления, согласно которой ускорение кинетических процессов при облучении твердых полимеров определяется увеличением в радиационном поле числа перескоков атомов, молекул и сегментов цепей, в то время как в случае резин преобладающую роль играют процессы обратимого разрушения вулканиза- [c.368]


    При вероятностно-статистическом моделировании получения дисперсных систем во фрикционных потоках и при кавитационно-акустическом воздействии активно используется понятие инфинитезимальных интенсивностей, под которыми в теории случайных процессов понимаются мгновенные локальные параметры данных процессов. При получении дисперсных систем инфинитезимальные интенсивности играют роль кинетических параметров процессов образования дискретных компонентов системы (диспергирование, генерация кавитационных пузырьков) и процессов их уменьшения (агрегирование частиц и разрушение пузырьков). [c.131]

    Если природа разрушенных элементов не изменяется в процессе обработки образца или его испытания на разрушение, то р можно полагать постоянным. Концентрация локальных напряжений Ч о/сго, которая в данном случае равна отношению модулей Е Е , оказывает наибольшее влияние на у. Поэтому из данной теории следует, что увеличение прочности эквивалентно возрастанию жесткости. Это следствие основано на предположении, что элементы действительно разрушаются при критической локальной деформации (кинетический вариант критерия Сен-Венана — максимума деформации). Иное объяснение [c.88]

    Кроме подхода с точки зрения механики процесса разрушения (механического) существуют два физических подхода к теории прочности термодинамический и кинетический. Последние позволяют понять природу процессов разрушения полимеров и объяснить их механизмы, учитывая законы термодинамики и структуру материала. [c.287]

    Понижая напряжение, можно достичь такого его значения, при котором практически не будет ускоряться разрушение полимера. При таком напряжении долговечность напряженного и ненапряженного полимеров почти одинаковы в них обоих процессы естественного старения развиваются с одинаковой скоростью. Это напряжение называется безопасным. При его достижении кривая долговечности меняет ход (рис 13.10). Таким образом в кинетической теории прочности нет понятия критического напряжения всякое напряжение за тот или иной промежуток времени производит разрушение. Однако ниже некоторого значения напряжения, называемого безопасным, разрушение не ускоряется под действием напряжения, а происходит в соответствии с тем, как быстро протекают процессы старения в полимере. [c.204]

    Пониженная прочность реальных резин связана, прежде всего, с возникновением в процессе деформации более высоких напрял<ений, чем это предсказывает кинетическая теория высокоэластичности, учитывающая только энтропийный ее характер и не рассматривающая энергетические изменения деформируемой системы, а затем и с тем, что в реальных резинах из-за неоднородности их структуры на всех уровнях распределение возникающих при деформации напряжений менее равномерно й, следовательно, в сечении, по которому произойдет разрыв, оказывается меньшее число цепей, подлежащих разрыву для разрушения деформируемого материала. [c.66]

    Журков и его сотрудники установили, что причиной возникновения первичных трещин в полимере являются тепловые флуктуации. В результате тепловых флуктуаций происходит резкое возрастание кинетической энергии отдельных атомов, колеблющихся около положения равновесия, что приводит иногда к разрыву химической связи в основной цепи нолимера. Это происходит в том случае, если кинетическая энергия атомов становится больше, чем энергия химической связи. Наряду с разрывом химических связей идет процесс их восстановления. Напряжения, возникающие от приложенной извне нагрузки, уменьшают энергию активации процесса разрыва химических связей, а тепловые флуктуации приводят к их разрыву. Термофлуктуационная теория прочности исходит из того, что разрыв химических связей обусловлен тепловыми флуктуациями, а напряжение уменьшает вероятность восстановления этих связей, придавая тем самым определенную направленность процессу разрушения. [c.294]

    Основной задачей физико-химической механики является получение дисперсных структур с заданны.ли механическими свойствами. Эта задача сводится к изучению физико-химических закономерностей и механизма процессов структурообразования в различных условиях кинетики развития пространственных структур с заданными механическими свойствами. Процессы возникновения и разрушения структур протекают во времени, и для управления этими процессами плодотворным является изучение именно кинетических закономерностей. Задача физико-хими-ческой механики в значительной степени связана с теорией образования новых дисперсных фаз из пересыщенного раствора как жидкой дисперсионной среды. Для управления процессами структурообразования необходимо знать, возникает ли пространственная структура в растворе, т. е.. в однофазной жидкой среде, или ее возникновение связано с образованием новой дисперсной фазы. [c.354]

    Рост температуры способствует быстрому процессу разрушения поверхностного комплекса, и порядок реакции практически становится первым. Исследования процесса горенпя угольного канала и угольной частицы с применением диффузионно-кинетической теории показали хорошее соответствие с граничными условиями, в которых был принят первый порядок реакции соединения углерода с кислородом. [c.189]

    Наиболее успешная, по нашему мнению, попытка установить зависимость между скоростью хрупкого разрушения твердого тела и скоростью поверхностной диффузии среды и микротрещины была сделана Бартеневым и Разумовской [56], исходя из кинетической концепции флуктуационной теории долговременной прочности. Они рассмотрели феноменологически кинетику роста разрушающей трещины и предположили наличие трех этапов в общем процессе разрушения в присутствии поверхностно-активной среды. [c.135]

    В последние годы значительно возрос интерес к кинетической теории разрушения полимеров, основанной на изучении физических и физико-химических процессов, вызываемых действием статических, ударных и периодических нагрузок. Глубокое изучение этих процессов позволит научно подойти к созданию новых высокопрочных полимерных материалов и способов их защиты от разрушения под действием различных видов нагрузок. В предлагаемой монографии проф. Г. Кауша, являющегося руководителем лаборатории полимеров отдела Высшей политехнической школы в Лозанне, систематизированы и обобщены результаты многочисленных исследований, включая основополагающие советские работы школы акад. С. И. Жур-кова. [c.5]

    В дальнейшем должны быть рассмотрены характерные вопросы обобшенных неморфологических теорий разрушения при кинетических процессах, а именно природа основных актов разрушения, их распределение в пространстве и времени, закон накопления отдельных актов и результирующие критерии разрушения. [c.77]

    Как уже утверждалось во введении к данному разделу, рост трещины в полимере с докритической скоростью обусловлен термомеханической активацией таких различных процессов молекулярного деформирования, как проскальзывание цепн, ее ориентация и раскрытие пустот. Количество рассеиваемой энергии зависит от частоты, природы, кинетики и взанмодейст-ния соответствующих процессов. Существует много известных попыток рассмотрения роста трещины с докритической скоростью как единого термически активируемого многоступенчатого процесса, характеризующегося единой энтальпией (или энергией активации) и единым активационным объемом. Несколько подобных кинетических теорий разрушения было рассмотрено в гл. 3 и 8. [c.358]

    Остальные пять глав содержат теорию и экспериментальные данные для полимеров и полимерных материалов с микротрещинами, уже имеющимися или возникающими при нагружении. Проблема микротрещин и трещин важна по двум причинам 1) реальный процесс разрыва в подавляющем числе случаев идет путем роста микротрещин и трещин 2) реальные полимеры и полимерные конструкционные материалы имеют, как правило, различного рода дефекты структуры, в том числе и микротрещины. Поэтому естественно, что прежде всего (гл. 4) рассмотрены механика и термодинамика разрушения твердых тел с трещинами и соответственно изложены два подхода к поочно-сти механический и термодинамический. Дальше, в гл. 5, рассматриваются кинетический подход и экспериментальные данные физики прочности полимеров, существенный вклад в которую внесли научные школы акад. С. Н. Журкова и проф. В. А. Степанова. В гл. б описана теория разрушения полимеров в хрупком и квазихрупком состояниях, предложенная автором монографии и объединяющая три подхода к прочности кинетический, термодинамический и механический. [c.8]

    Понселе [6.5], а также автором монографии. Журковым с сотр. на основе фундаментальных исследований кинетики разрушения твердых тел предложена концепция о термофлуктуационной природе прочности и сформулирован кинетический подход к процессу разрушения. Степановым с сотр. эта концепция развита и уточнена для хрупкого состояния и перехода к квазихрупкому разрушению, выяснено принципиальное отличие процесса деформации от разрушения твердых тел. Теория разрушения полимерных цепей и полимеров в высокопрочном состоянии на основе этой концепции развита Губановым и Чевычеловым, Разумовской, Савиным, Мелькером, Веттегренем и другими исследователями. [c.146]

    Систематическое изучение долговечности различных по структуре и свойствам материалов, определение прочностных параметров i/o, V и То позволили развить представления о кинетическом характере разрушения и термофлуктуационнз Ю теорию прочности. Из зависимости долговечности от напряжения совершенно очевидно, что разрушение — это процесс, происходящий во времени, т. е. идущий с определенной скоростью, и долговечность можно рассматривать как величину, обратно пропорциональную усредненной скорости V процесса разрушения. Кроме того, из уравнения (7.5) следует, что долговечность тела одинаковым образом зависит от приложенного напряжения и температуры — оба параметра входят в показатель степени. Это заставляет предположить, что в процессе разрушения большую роль играет тепловая энергия и именно ее флуктуации, т. е. в том месте материала, где тепловые флуктуации становятся больше энергии разрываемой связи, последняя разрывается, Приложенное напряжение создает возможность накопления этих флуктуаций в определенном направлении и снижает энергию активации разрыва. [c.197]

    Теория молекулярного взаимодействия. Томлинсон в 1929 г. и Хардк в 1936 г. установили зависимость между силой трения и диссипацией энергии, когда атомы одного материала выхватывают в результате взаимодействия атомы другого материала с поверхности контртела. Впоследствии было показано, что адгезионное трение обусловлено молекулярно-кинетическими процессами разрушения связей, при которых энергия рассеивается в циклах растяжения, при разрыве и релаксации поверхностных и подповерхностных мо-леку.л (см. гл. 8). [c.23]

    Остановимся в заключение этого параграфа на той большой роли, которую играет изучение магистральных трещин в развитии кинетической концепции разрушения. Действительно, излагаемые выше результаты изучения разрушения различными прямыми методами ставились, как правило, так, что исследовались те или иные процессы (напряжение и первичный распад межатомных связей, последующие механо-химические реакции, образование сумикроскопических трещин, появление и развитие микроскопических трещин) во всем объеме нагруженного тела (полимера). Безусловно, получаемая здесь информация имеет первостепенное значение для выяснения физики разрушения. Без этих данных, собственно, и нельзя строить физическую теорию разрушения тел. Но, с другой стороны, все эти данные, позволяя шаг за шагом описывать ход разрушения, не могут пока дать возможность предсказать с достаточной точностью долговечность тела. Это и понятно, так как указанные методы применялись ко всему объему нагруженного гела, а разделение тела на части — процесс сильно локализованный. [c.351]

    Однако здесь следует оговориться, что исследованиями последних лет убедительно доказано, что разрушение твердого тела может происходить при напряжениях гораздо более низких, чем предел прочности, и что при заданном напряжении прочность твердого тела зависит от времени воздействия нагрузки. Установлено также, что чем дольше тело находится в на пряженном состоянии, тем П ри меньшей нагрузке произойдет его разрушение и, наоборот, чем меньше приложенное напряжение, тем больше время жизни твердого тела. На основании этих исследований и обобщения результатов многочисленных экспериментов, проводимых под руководством С. Н. Журкова, была разработана теория температурно-временной зависимости прочности твердых тел, согласно которой разрушение тела рассматривается как некоторый кинетический процесс, происходящий во времени. В качестве основной экспериментальной характеристики сопротивления материала статическому разрушению используют механическую долговечность т — время от Момента приложения постоянного на пряження до момента разрушения твердого тела. [c.19]

    Кинетическая теория разрушения. Катастрофическое разрушение полимерных материалов является сложным процессом, включающим в себя целый ряд лишь частично изученных явлений, которые протекают как на молекулярном, так и на макроскопическом уровне. Одно из микроскопических явлений - это разрыв связей в главной цепи полимера, изученный как методом МСНПО, так в методом электронного парамагнитного резонанса (ЭПР). [c.72]

    Оси. работы посвящены исследованию кинетики хим. р-ций и биол. процессов, старению и стабилизации полимеров. Внес крупный вклад в теорию и практику процессов жидкофазного окисл. орг. в-в, в изучение механизма действия ингибиторов, гомогенных и гетерогенных катализаторов этих процессов, в исследование кинетики деструкции и стабилизации полимеров. Нащел (1953—1965) оригинальные пути использования р-ций окисл. углеводородов и др. орг. в-в в нефтехимии. Пред/южил (1956) новый принцип перевода газофазных р-ций окисл. углеводородов на режимы низкотемпературного жидкофазного окисл,, обеспечивающего большие выходы целевых продуктов, В этой связи разработал (1956—1957) научные основы окисл, бутана при т-рах и давлениях, близких к критическим, для производства уксусной к-ты, метил-этилкетона, этилацетата. Показал возможность использования сопряженных цепных окислительных р-ций для получения окисей олефинов. Развил теорию действия ингибиторов в процессах окисл., получившую широкое практическое применение (торможение старения смазочных и горючих мат-лов, порчи пищевых жиров, лекарств, препаратов и др.). Проводил (с 1967) совм. с А. Л. Бучаченко исследования молекулярного разрушения и стабилизации полимеров, предложил методы тестирования эффективности стабилизаторов и колич. критерии стойкости полимеров к различным видам деструкции, Применил (1964—1970) кинетические методы в эксперим, и клинической онкологии для [c.521]

    Кинетический подход, основателем которого является акад. С. Н. Журков [11.10 61], отличается тем, что основное внимание обращается на атомно-молекулярный процесс разрушения и разрыв тела рассматривается как конечный результат постепенного развития и накопления микроразрушений или как процесс развития микротрещины на молекулярном уровне. Основным фактором в этом подходе является тепловое движение в полимерах. Выяснение природы этого термофлуктуационного процесса разрушения, зависимости скорости процесса и долговечности от температуры, напряжения и других факторов является основой современной физической теории прочности и базой для дальнейшего развития теорий предельного состояния в механике разрушения. Эти подходы будут в дальнейшем рассмотрены подробней. [c.287]

    Таким образом, как термодинамический, так и кинетический подходы к процессу разрушения и термофлуктуационная теория прочности хрупких твердых тел приводят к выводу о сушествова-нии безопасного напряжения, для расчета которого при одноосном растяжении предложены уравнения (11.42) и (11.43), а для сложнонапряженного состояния — уравнение (11.44), а также к диаграмме механизмов разрушения, показанной на рис. 11.11, где приводятся границы существования безопасных напряжений, термофлуктуационного и атермического разрушения в зависимости от размеров начальных микротрещин в материале. На основании этих уравнений может быть определен критерий оценки безопасных микротрещин в хрупких твердых телах. Порог разрушения по Гриффиту аа ° соответствует безопасному напряженую оо, а не критическому (Тк, как это считалось до сих пор общепринятым. [c.314]

    Таким образом, в высокоэластическом состоянии механические потери в самом полимере дают весьма малый вклад в силу трения которая в основном определяется рассеянием энергии в поверхностном молекулярном слое при многократных деформациях поверхностных полимерных цепей в процессе непрерывного разрушения и восстановления ван-дер-ваальсовых связей между полимерными цепями и твердой поверхностью металла, т. е. адгезионной составляющей силы трения, определяемой из молекулярно-кинетической теории трения по уравнению вида [c.377]

    Зависимости v от К, данные которых были представлены вначале, являются наиболее удачным выражением кинетических особенностей растрескивания и зависимости растрескивания от напряжения. Использование коэффициента интенсивности напряжения, несомненно, удовлетворяет тех, кто рассматривает линейную упругую механику разрушения в качестве основного средства решений всех проблем разрушения, но не удовлетворяет тех, кто считает, что такие зависимости не дают достаточной информации о КР. Вероятно, истина находится между этими двумя крайностями. Достижение механики разрушения (для металлических материалов) базируется на теории Гриффитса [199] разрушения упругих твердых тел. Согласно анализу Орована — Ирвина для металлических материалов [200, 201] в процессе разрушения совершается работа пластической деформации дополнительно к работе упругой деформации, необходимой для образования новых поверхностей. Таким образом, уравнение Гриффитса изменяется и для плосконапряженного состояния принимает вид Стт = = 2E y,+yp)ln ) k. [c.389]

    В книге обсуждается роль поверхностных сил не только в статике, но и в кинетике. На основе неравновесной термодинамики проводится рассмотрение процессов переноса в тонкопористых телах и тонких пленках жидкостей. В таких системах дальнодействие поверхностных сил приводит к появлению новых кинетических эффектов, таких, например, как капиллярный осмос, обратный осмос и диффу-зиофорез, лежащих в основе ряда технологических процессов. Особенности течения жидкостей в тонких порах и пленках важны для понимания закономерностей фильтрации, капиллярной пропитки и диффузионного извлечения, сушки и многих других массообменных процессов. Совместный анализ процессов тепло- и массопереноса позволил развить теорию термоосмоса, а также теорию термокристаллизационного течения незамерзающих прослоек и пленок воды в промерзших пористых телах. Эта теория дала объяснение известных явлений морозного пучения грунтов и разрушения пористых тел при промораживании. [c.5]

    Общее уравнение кинетики гетерогенной каталитической реакции позволяет рассчитывать скорость процесса, если величина будет задана как функция концентрации реаги эующих веществ в соответствии с механизмом нротекання процесса. Так как в подавляющем большинстве случаев детальный механизм реакции не известен, то мы до последнего времепи вынуждены пользоваться при определении поверхности, занятой реагирующим веществом, адсорбционной теорией Лангмюра, несмотря на ее недостатки. Эта теория во многих случаях позволяет получить кинетические уравнения, согласующиеся с опытом. Это можно объяснить тем, что уравнения кинетики, полученные из рассмотрения скоростей процесса образоватшя и разрушения поверхностных соединений, формально похожи на уравнения, полученные при помощи изотермы Лангмюра, как это было показано одним из нас на примере регенерации алюмосиликатных катализаторов [4, 5, 6]. [c.43]

    Излагаются совр( меиная теория прочности полимеров и механизмы их разрушения в различных структурных и релаксационных состоянняк с позиций термодинамической и кинетической теорий и микромехаинкн разрушения. Рассмотрено влияние различных факторов на процессы разрушения по данным различных структурных методов рентгеновского, масс-спектрометрического, ИК-спектрометрии, пиролиза, релаксационной спектрометрии и др. Анализируется связь между мexaни мами разрушения и релаксационными явлениями. П])иводятся новые данные о дискретных спектрах прочности и долговечности полимеров. [c.2]


Библиография для Теории разрушения при кинетических процессах: [c.9]   
Смотреть страницы где упоминается термин Теории разрушения при кинетических процессах: [c.24]    [c.140]    [c.18]    [c.631]    [c.203]    [c.427]    [c.15]   
Смотреть главы в:

Разрушение полимеров -> Теории разрушения при кинетических процессах




ПОИСК





Смотрите так же термины и статьи:

Кинетические процессы



© 2025 chem21.info Реклама на сайте