Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформация неупругая

    Эта книга могла бы также иметь название Кинетическая теория разрушения полимеров . Однако термин кинетическая теория нуждается в определении или по крайней мере некотором пояснении. В кинетической теории детально рассматривается влияние дискретности материи, движения и физических свойств молекул на макроскопическое поведение ансамбля в газообразном или другом состоянии вещества. В кинетической теории прочности приходится дополнительно учитывать упругие и неупругие деформации, химические реакции и физические процессы, типы различных этапов разрушения и их последовательность. [c.7]


    Консистентные смазки благодаря коллоидным особенностям своей структуры, наоборот, характеризуются так называемой структурной или аномальной вязкостью. Их вязкость при постоянной температуре сильно зависит от градиента скорости сдвига. Чем он больше, тем вязкость смазки меньше. В практике применения консистентных смазок это имеет положительное значение, так как увеличение скорости движения труш ихся частей в механизмах сопровождается уменьшением вязкости смазки, что относительно снижает обш ее сопротивление системы движению. Обш ее течение слоев, как в масле, в смазке не имеет места. Течение, или неупругая деформация смазки состоит из суммы деформаций ее отдельных структурных элементов, зависяш их от скорости сдвига. Следовательно, понятие о вязкости смазок весьма условно и постоянного показателя вязкости они не имеют. Следует отметить, что вязкость смазок с изменением температуры изменяется во много раз меньше, чем у нефтяных масел. Это, конечно, является также положительной характеристикой консистентных смазок. [c.250]

    Исходя из классических представлений, переход кинетической энергии поступательного движения электрона в энергию электронного возбуждения атома или молекулы можно рассматривать как неупругий удар. Удар, при котором энергия поступательного движения будет переходить во внутреннюю энергию, является неупругим. При неупругом ударе деформация соударяющихся тел увеличивается до тех пор, пока скорости их не станут одинаковыми (т. е. Ц1 = и2 = и), после чего шары перестанут давить друг на друга и будут двигаться вместе. [c.74]

    Полученное выражение пригодно для расчетов дезинтеграторов при измельчении абсолютно упругих материалов. Для измельчения материалов неупругих, имеющих кривую деформации с областью текучести, необходимую скорость разрушения определяют опытным путем. Затем находят соотношение между радиусом и числом оборотов барабана дезинтегратора. [c.153]

    Хотя все три фактора способствуют увеличению сопротивления удару, корреляция будет ограниченной вследствие того, что релаксация определяется в линейной неупругой области напряжений и при малых скоростях деформации. Данные условия совершенно не соответствуют условиям испытания на удар. Количественное рассмотрение с точки зрения механики разрушения также должно учитывать начало роста трещины и ее распространение (гл. 9). [c.276]

    Специфическая зависимость протекаемости асбестовых диафрагм от давления связана с деформацией волокон асбеста под влиянием давления фильтрации, что приводит к снижению пористости диафрагмы, уменьшению среднего диаметра пор и изменению коэффициента протекаемости. Деформация волокон асбестовой диафрагмы под влиянием давления фильтрации в основном имеет неупругий характер. Это подтверждается зависимостью протекаемости диафрагмы от максимального давления фильтрации, приложенного ранее к диафрагме. При упругих деформациях протекаемость диафрагмы целиком определялась бы приложенным в данный момент давлением фильтрации и не зависела бы от ранее испытанного диафрагмой давления. [c.47]


    Листочки минералов листоватой структуры под влиянием внешних усилий легко изменяют кривизну — гнутся. Это свойство воспринимать деформации называют гибкостью. В слюдах гибкость упругая, после снятия напряжения листочки слюды выпрямляются. В хлоритах область упругих деформаций незначительна, согнутый листочек у них не распрямляется. Такие минералы называют гибкими неупругими. Можно определить также гибкость некоторых волокнистых минералов —хризотил-асбеста, амфибол-асбеста, силлиманита. Очень прочные минералы тонкозернистой или спутанно-волокнистой структуры называют вязкими (халцедон, нефрит). [c.104]

    Проведенные испытания дали возможность установить, что наряду с накоплением неупругой деформации непрерывно происходит рассеянное разрушение материала, проявляющееся в увеличении размаха деформации за цикл. Разрушение образца происходит в тот момент, когда величина общей деформации цикла, состоящей из накопленной (необратимой) деформации и текущей деформации цикла, становится приблизительно равной Еде — деформации, соответствующей пределу прочности при сжатии, то есть [c.69]

    Циклические испытания проводились при мягком цикле нагружения в условиях пульсирующего сжатия. Размах напряжений задавался в пределах (0,4...0,9 , где -предел прочности при сжатии до разрушения. В ходе испытаний регистрировались кривые деформирования и зависимость деформации рабочей части образца от времени. Полученные кривые деформирования нелинейны. Ширина петли гистерезиса на первых циклах уменьшается, что говорит об упрочнении материала. При последующих циклах нагружения происходит увеличение ширины петли гистерезиса и непрерывное уменьшение касательного модуля. Одновременно с этими процессами, характеризующими разупрочнение материала, наблюдается непрерывное одностороннее накопление неупругой деформации образца. Скорость накопления деформации и разупрочнения остается постоянной во время стабильной работы материала и начинает резко увеличиваться перед разрушением образца. С увеличением температуры испытаний процессы накопления деформаций и разупрочнения идут интенсивнее и проявляются уже при малых уровнях циклических напряжений. На кривой деформирования (выпуклой на первых циклах) после 10 — 15 циклов нагружения появляются перегибы в полуциклах нагружения и разгрузки, что говорит об образовании и развитии двух систем трещин, ответственных за рассеянное разрушение материала образца. Предложена модель материала с односторонними связями, учитывающая две системы развивающихся трещин и позволяющая описать математически стабильный цикл деформирования графита. [c.71]

    Давление при опрессовке прессом достигает 2ч-2,2 МПа. После снятия пресса из-за деформации стяжных элементов и неупругих деформаций сегментов давление уменьшается. За расчетное давление на поверхности сегмента принимают давление, равное 1,5 МПа. [c.27]

    ИЗУЧЕНИЕ КОРРОЗИОННОЙ УСТАЛОСТИ ПО ОПРЕДЕЛЕНИЮ НЕУПРУГИХ ДЕФОРМАЦИЙ МЕТАЛЛА [c.39]

    Степень нарастания стабилизированных значений неупругих деформаций с увеличением амплитуды напряжений в определенной степени характеризует показатель циклического упрочнения Я = 1д а. Чем меньше Д, тем более интенсивно возрастают неупругие деформации с увеличением уровня циклических напряжений. При сравнении результатов удобнее-пользоваться относительным показателем циклического упрочнения Д = Я / , где Е — модуль упругости металла. [c.40]

    Установлено, что в чистом и активированном вазелиновом масле соответственно при амплитудах, равных пределу выносливости в вазелиновом масле и 2 %-ном растворе олеиновой кислоты, образы стали 45 получают примерно одинаковое приращение неупругой деформации, не приводящей к разрушению при /V=10 цикл нагружения. Образцы на воздухе достигают предела выносливости при более высоких значениях неупругих деформаций в приповерхностных слоях, что можно связать с усилившимся на этом уровне напряжений температурным фактором, который активизирует пластическое течение тонкого поверхностного слоя, способствуя одновременно ускоренному протеканию динамического деформированного старения, Циклический предел пропорциональности в жидких коррозионно-активных средах несколько больше, чем в воздухе, причем в дистиллате меньше, чем в соляном растворе (табл. 14). [c.84]

    Таким образом, можно сделать заключение, что если пластическое течение углеродистой стали совершается с интенсивным отводом тепла, то создаваемое в результате этого упрочнение будет меньшим, чем при самонагреве образцов в воздухе. Поэтому в инактивной и поверхностно-активной жидких средах образцы будут достигать предела выносливости с меньшей накопленной неупругой деформацией. Поскольку в таких средах интенсивность нарастания неупругих деформаций с увеличением амплитуды напряжений заметно ниже, чем в воздухе, то они в различной степени влияют на ограниченную выносливость стали. Рассмотренные диаграммы дают возможность дифференцировать активные среды по способности изменять упругие свойства металла при циклическом нафужении. [c.84]


    Наиболее короткими являются времена релаксации, связанные с упругой деформацией в воде. Время релаксации диэлектрической дисперсии приблизительно на порядок больше времени упругой деформации. Процесс диэлектрической дисперсии связан с переориентацией частиц в электрическом поле и требует для своего осуществления освобождения их от водородных связей. С освобождением от связей с ближайшими соседями связан и процесс самодиффузии молекул. По-видимому, эти процессы надо характеризовать другим микроскопическим временем Тг- Это время измеряется в экспериментах по неупругому рассеянию нейтронов. Время Тн о- н- ч-Он" характеризует процесс диссоциации молекулы на ионы и является характеристикой межмолекулярного взаимодействия в воде, обусловленного переходами протонов от молекулы к молекуле. [c.128]

    Силу трения для взвешенных твердых частиц (псевдоожиженные системы) можно определить с помощью вискозиметра. Соотношение между неупругой деформацией (течением) тела и силой, вызывающей эту деформацию, называется реологической характеристикой тлла. При действии касательных сил в теле возникает сопротивление, так называемое тангенциальное напряжение. Целью реологических измерений является установление связи между скоростью и напряжением сдвига. [c.228]

    Достигнутый к настоящему времени уровень развития механики разрушения позволяет эффективно решать задачи, связанные с определением трещиностойкости высокопрочных материалов. Однако, применительно к сталям средней и низкой прочности с Ов = 500-600 Н/мм , являющимся основным конструкционным материалом в газонефтехимическом машиностроении, использовании положений линейной механики разрушения оказывается в ряде случаев необоснованным из-за значительной пластической деформации в этих материалах в области неупругого деформирования вблизи контура трещины. Отмеченное обстоятельство предопределяется типом напряженного состояния, зависящим также от толщины металла. [c.237]

    Необходимость анализа систематических ошибок, связанных с наличием остаточных давлений, неупругой деформацией мембраны, а также сдвигом температуры, обоснована в работе Коковина [4]. [c.151]

    Эти методы позволяют регистрировать удары отдельных частиц и определять их скорость, но развитие их затрудненэ большой сложностью расшифровки показаний датчика. Энергия, передаваемая пьезоэлементу при ударе, далеко не однозначно связана с энергией ударяющей частицы и зависит от довольно неопределенного коэффициента восстановления относительной скорости (степени неупругости удара) и направления скорости частицы. По-видимому, в наибольшей степени близким к действительности является измерение площади первичного пьезоэлектрического импульса [67, с. 29 102], поскольку к моменту остановки частицы вся ее кинетическая энергия переходит в энергию деформации. [c.84]

    Известно, что обязательной стадией всех химических реакций, протекающих в присутствии гетерогенных и гомогенных катализаторов, а также хемосорбции и физической адсорбции является соударение молекул или ионов реагирующих веществ, субстратов, хемосорбатов и физических адсорбатов с катализаторами, ферментами, сорбентами [15]. Теоретически удары можно делить на абсолютно упругие и абсолютно неупругие [16]. При абсолютно упругом ударе шаров тепло не возникает, так как сохраняется вся механическая энергия системы. При абсолютно неупругом ударе (рис. 2) шары деформируются и возникающие между ними силы взаимодействия будут тормозить ударяющийся шар и ускорять ударяемый до тех пор, пока скорости обоих шаров не сравняются. В этот момент суммарная кинетическая энергия обоих шаров уменьшается по сравнению с первоначальным ее значением до удара, так как часть ее будет затрачена на преодоление сопротивлений и перейдет в различные другие формы энергии, в том числе в тепло, энергию пластических деформаций и т.д. [c.30]

    В работе H.A. Махутова отмечено, что предпочтение следует отдать методике расчета не по напряжениям, а по деформациям. Преимущество ее состоит в том, что в рассмотренные деформационные критерии статического, циклического и хрупкого разрушения входит комплекс основных характеристик механического поведения прочность Oj, Og-, пластичность Фв Фк показатели упрочнения в неупругой области АП, с параметры диа- [c.152]

    Абсолютно упругий и абсолютно неупругий удары являются идеальными предельными случаями. При соударении реальш>1х тел всегда имеют место и упругие и остаточные деформации и поэтому удар будет частично неупругим. При абсолютно упругом ударе относительная скорость шаров после удара равна по величине и направлена противоположно их относительной скорости до удара. При абсолютно неупругом ударе эта относительная скорость после удара равна нулю, так как и, = и, = 0. При частично неупругом ударе относительная скорость после удара (и, - и,) равна некоторой доле относительной скорости до удара (у, - V,) е  [c.31]

    Даже при таких малых деформациях кажущийся модуль Юнга зависит от скорости деформирования. Это указывает, что Е неоднозначно определяется энергией упругого деформирования угловых связей в цепях, длиной связей и межмолеку-лярными расстояниями, но, кроме этого, характеризуется чувствительностью ко времени смещений атомов и небольших атомных групп. В следующей области деформации (1—5%) напряжение и деформация уже не пропорциональны друг другу. Здесь происходят структурные и конформационные перестройки, которые обратимы механически, но не термодинамически. В этом случае говорят о неупругом (вязкоупругом в узком смысле), или параупругом, поведении. За пределом вынужденной эластичности начинается сильная переориентация цепей и ламеллярных кристаллов, а сам процесс обычно носит название пластическое деформирование . Под чисто пластическим деформированием можно понимать переход от одного равновесного состояния к другому без внутренних напряжений. Последнее особенно важно в связи с тем, что следующая после предела вынужденной эластичности деформация связана главным образом с механически обратимыми неупругими конфор-мационными изменениями молекул, а не с их перемещением друг за другом. До тех пор пока не достигнуто состояние равновесия с помощью соответствующей термообработки, сильно вытянутые образцы могут в значительной степени возвращаться в исходное состояние после снятия напряжения. Исходя из содержания настоящей книги, основное внимание следует уделять не процессам, вызывающим или сопровождающим молекулярную переориентацию (которая в основном понимается как эффект упрочнения), а процессам повреждения, т. е. разрыва цепи, образования пустот и течения. Последние процессы постепенно нарастают в области деформаций сразу же за пределом вынужденной эластичности вплоть до окончательного разрушения. К числу процессов, вызывающих повреждения, следует также отнести явление вынужденной эластичности при растяжении или образование трещины серебра в стеклообразных полимерах, которые будут рассмотрены в гл. 9. [c.38]

    Последующее молекулярное описание одноосного деформирования неориентированного частично кристаллического полиэтилена характеризует пластическую деформацию волокон, образующих термопласты со сферолитной структурой. Оно может служить иллюстрацией большого разнообразия механизмов деформирования. При деформациях менее 1 % выявляют анизотропные упругие свойства кристаллов (орторомбического) полиэтилена [57] и аморфного материала [53]. При тех же самых условиях имеют место неупругие деформации СНг-групп и сегментов цепей, которые обусловливают низкотемпературные Р-, у- и б-релаксационные механизмы [10, 56]. При больших деформациях (1—5%) происходит дополнительное изменение сегментов цепи, их относительного положения и конформационные изменения (поворот связей). Подробное исследование поведения цепей в аморфных областях было выполнено Петракконе и др. [53]. В кристаллических областях под действием деформаций такого же порядка возникают дислокации и дислокационные сетки (наблюдаемые в ламеллярных кристаллах в виде муаровых узоров). В зависимости от условий внешнего нагружения и типа дислокаций их движение вызывает пластическую деформацию кристалла путем двойникования, смещения плоскостей или фазового перехода орторомбической ячейки в моноклинную. Обширный обзор деформирования полимерных монокристаллов был дан Зауэром и др. [57] и в книге Вундерлиха [3]. Детальный расчет вклада различных структурных элементов и дефектов в деформирование частично-кристаллических полимеров можно найти во многих статьях, из которых здесь приводятся только некоторые [47—62]. Хотя упомянутые выше эффекты обусловливают нелинейность зависимости напряжение—деформация, первоначально существовавшая надмолекулярная организация все еще сохраняется. Подобная деформация называется однородной. [c.41]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]

    В предыдущих разделах рассматривались свойства цепей и микрофибрилл исключительно при постоянных или монотонно возрастающих напряжениях или деформациях. Однако в процессе работы волокна часто подвергаются воздействию прерывистой или циклической нагрузки. Поэтому в течение многих лет изучалось [72—82] поведение волокна под действием повторяющегося циклического нагружения. На основе обширного обзора Хирля и др. [76] можно сказать, что при накоплении циклических растяжений волокно ослабляется, когда достигается его удлинение, соответствующее разрыву. При таком условии постоянно возрастающего максимума растяжения усталость можно рассчитать с помощью соответствующей информации о неупругом деформировании волокна и зависящих от времени условий его разрыва. Пока еще не обнаружено никаких особых усталостных эффектов при накоплении циклических растяжений [76]. [c.261]

    Длинные и гибкие цепи полимера способствуют монотонному частично неупругому деформированию материала при постоянной нагрузке, а именно деформации ползучести. В статистических теориях разрушения обычно специально не рассматривается степень деформации при ползучести. Можно напомнить (разд. 3.4, гл. 3), что кинетическая теория Журкова и Буше также не учитывает деформацию ползучести как один из видов деформирования. В теории Сяо—Кауша, разработанной для твердых тел, не обладающих сильной неупругой деформацией, рассматривается зависимость деформации от времени, которая считается, однако, следствием постепенной деградации полимерной сетки. Буше и Халпин специально рассматривают макроскопическую ползучесть, чтобы учесть соответствующие свойства молекулярных нитей, которые в свою очередь оказали бы влияние на долговечность материала. Согласно их теории, запаздывающая реакция матрицы каучука или термопласта вызывает задержку (вследствие влияния на /ь) роста зародыша трещины до его критического размера. [c.278]

    Вязкотекучее состояние — одно из структурно-жидких релаксационных состояний полимеров, при котором воздействие на систему механинеских сил приводит преимущественно к развитию необратимых (пластических) деформаций. Впрочем, это определение, приведенное в [24, т. 1, с. 577], не учитывает рассмотренных выше факторов, связанных со стрелкой действия и релаксационным спектром (см. рис. 11.2) определение относится к обычным, условиям воздействия с малой скоростью, когда отклик системы на воздействие в целом неупругий. [c.162]

    Реология, получившая в последнее время значительное развитие и обычно определяемая как наука о неупругом поведении тел и о те-чении структурированных жидкостей, а также ра.чличных твердых тел, входит, таким образом, в область (Ьизико-химической механики Однако физико-химическая механика не исчерпывается проблемами реологии и самой механики (исследования деформаций тел под влиянием различных внешних сил), даже в их физико-химических аспектах. Основная цель физико-химической науки — установление закономерностей получения (синтеза) различных твердых тел с заданными механическими свойствами, разработка научных основ технологии получения строительных и конструкционных материалов с требующимися механическими свойствами и структурой. [c.208]

    При неупругом ударе, как правило, энергия поступательного движения переходит во внутреннюю энергию молекул (вращательную, колебательную, электронную), причем деформация сталки- [c.81]

    Для железа и малоуглеродистой стали по мере приближения к пределу текучести кривая напряжение—деформация немного закругляется, в связи с появлением небольшой неупругой деформации совместно с микродеформацией, обусловленной образованием дислокационных нагромождений еще до наступления текучести. В начале деформирования тонкий поверхностный слой упрочняется раньше всего объема металла, поскольку предел-текучести этого слоя ниже [55] и взаимодействие дислокаций в тонком поверхностном слое приводит к росту деформационного унроч- / нения на начальной стадии пластической деформации, сконцент- рированному в тонком поверхностном слое (эффект Сузуки [56]). Этим объясняется увеличение А г перед началом легкого сколь- i жения, пропорциональное росту деформационного упрочнения At в области напряжений между пределом упругости (е = 0,2%) и началом легкого скольжения (см. рис. 9). [c.69]

    Окружающая среда изменяет показатель циклического упрочнения образцов, а также циклический предел пропорциональности (табл, 14). Участки кривых неупругого приращения деформации для образцов, испытанных в воздухе и поверхностноактивной среде, на диаграммах пересекаются в точке, соответствующей напряжёнию, близкому к пределу выносливости образцов в воздухе (см. рис, 40). [c.84]

    Кинетика накопления неупругих деформаций при испытании рбразцов из технически чистого железа и стали 45 различается, хотя основные три периода сохраняются. Армко-железо является циклически стабильным при низких амплитудах напряжений и циклически разупрочняющимся при больших напряжениях. Циклическое разупрочнение начинается с периода П, а отличие от нормализованной стали 45, у [c.84]

    Линейная зависимость модуля упругости от величины пластической деформации присуща многим материалам [396 - 400], Анализ данных, приведенных на рис. 3.8, позволяет определить изменение внутренних налря кений в осадках железа и относительную часть ыикрообъемов материала, которая в данный момент деформируется неупруго, по соотношениям [326]  [c.118]

    При развитьи пластических деформациях можно применять прямые методы расчета, но требуется надежный и сложный аппарат расчета напряженно-деформированного состояния в неупругой области. Существуют более экономные, но менее точные методы расчета на прочность, которые можно было бы назвать косвенными. Идея их состоит в том, что рассчитывается напряженно-деформированное состояние соединения при эксплуатационных нагрузках, когда пластические деформации невелики или даже вовсе отсутствуют. Затем проводится сравнение численного значения критерия напряженно-деформирован-ного состояния в опасной зоне соединения с предельным, т.е. с механжеской характеристикой. [c.261]


Смотреть страницы где упоминается термин Деформация неупругая: [c.87]    [c.233]    [c.171]    [c.47]    [c.91]    [c.143]    [c.78]    [c.87]    [c.289]    [c.279]   
Разрушение твердых полимеров (1971) -- [ c.143 , c.145 ]




ПОИСК







© 2024 chem21.info Реклама на сайте