Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии тионовые

    Из многочисленных видов бактерий наибольший вред приносят сульфатвосстанавливающие (СВБ) и тионовые бактерии. Примерно 80% коррозионных поражений эксплуатационных скважин связано с деятельностью СВБ. Процесс коррозии от микробиологических процессов протекает прежде всего на участках оборудования, где застаивается вода, например, яа днищах резервуаров, обсадных колонн, внутренней поверхности стальных магистральных водоводов, систем конденсационно-холодильного оборудования и др. СВБ в процессе своей жизнедеятельности превращают сульфаты и сульфиты в сероводород, окисляя молекулярный водород, всегда присутствующий в природных водах или выделяющийся в результате катодной реакции при коррозии стального оборудования. [c.19]


    Однако в пластовых и сточных водах, содержащих сероводород, кислород, отмечаются скорости коррозии оборудования 6—8 мм/год. В присутствии тионовых сероокисляющих бактерий возможно окисление сульфида железа до сульфат ионов серной кислоты и, в результате, заметное подкисление среды. [c.19]

    В каждом грамме ила примерно содержится а) от 100 тыс. до 1 млн. бактерий, восстанавливающих сульфаты б) от 10 до 100 тыс. тионовых бактерий в) около 1000 нитрифицирующих бактерий г) от 10 до 100 тыс. денитрифицирующих бактерий д) примерно по 100 анаэробных и аэробных разрушителей клетчатки. [c.293]

    Аноксигешые фототрофные серные бактерии, тионовые бактерии [c.124]

    В сточной воде плотностью 1,085 кг м pH = 6,75, содержащей 0,13 кг/м H2S, 0,0008 кг мЗ Оа, 10 клеток/мл сульфатвосстанавливающих и 10 клеток мл тионовых бактерий, непрерывная дозировка ингибитора-бактерицида Дон-52 в количестве 0,05—0,1 кг/м обеспечивает эффективность защиты 82—98%. При дозировке 0,4 кг м этого ингибитора-бактерицида полностью подавляется жизнедеятельность СВБ. [c.162]

    Присутствие УОБ и тионовых бактерий в нефтяных пластах связано с высокой кратностью водообмена. В пласты поступает значительное количество растворенного в пресной и сточной водах кислорода, необходимого для жизнедеятельности микроорганизмов. [c.127]

    Полное ферментативное окисление тионовыми бактериями молекулярной серы и различных ее восстановленных соединений приводит к образованию сульфата. Окисление сероводорода до сульфата сопровождается потерей 8 электронов, поступающих в дыхательную цепь, при этом в качестве промежуточных продуктов образуется молекулярная сера и сульфит  [c.371]

    Ацидофильные тионовые бактерии в результате интенсивного развития подготавливают условия для жизнедеятельности ацидо- [c.56]

    Строительные материалы могут разрушаться микроорганизмами. Отмечены значительные повреждения бетона со снижением механической прочности на сжатие и изгиб образцов после воздействия тионовых (10 клеток/мл), нитрифицирующих (10 ) бактерий и СВБ (10 ). [c.85]

    Большие количества сероводорода образуются в верхних слоях морских донных отложений и в придонных водах морей, отличающихся высокой биологической продуктивностью и слабой циркуляцией. Однако прорыва сероводорода в атмосферу не происходит из-за деятельности микробиологического фильтра, функции которого выполняют фототрофные тионовые бактерии (уравнение (2.7)). [c.67]

    Материалы и оборудование. Для выявления тионовых бактерий жидкая среда с гипосульфитом натрия, эрленмейеровские колбы емкостью 100—150 мл, речной ил, сточная вода. [c.132]

    Поскольку у тионовых бактерий место включения электронов в дыхательную цепь находится на уровне цитохрома с, у них функционирует система обратного переноса электронов для обеспечения конструктивных процессов молекулами НАД Н3. [c.372]


    Процессы окисления микроорганизмами соединений серы осуществляются определенными видами бактерий — тионовыми и серными. Ферментные системы их способны окислять самые разнообразные соединения серы (серусодержащие ионы), такие, в которых ее валентность составляет и—2, т. е. ион и О, т. е. молекулярную серу — 5°, и 4-4, т. е. ионы 5гОз ,и 40б , а также ионы СЫ5 и Ре +. При этом образуются главным образом ионы ЗО (валентность серы -f6), 540 или молекулярная сера — 8°. Железо переходит в Ре +, а азот — в КН +. Окисляются, следовательно, сульфиды, молекулярная сера, сульфиты, гипосульфит. Обычно происходит снижение pH (даже до 0,5) вследствие образования серной кислоты. [c.121]

    Так, при непрерьшной дозировке 0,05—0,1 кг/м ингибитора-бактерицида ДОН-52 в сточную воду с pH = 6,75, содержащую 0,013 кг/м На8, 0,0008 кг/м 0 , 10 клеток/мл СВБ и 10 клеток/мл тионовых бактерий, эффективность заидитного действия составляет 82-98 %. Аналогичную эффективность защитного действия обеспечивает и ингибитор-бактерицид ДОН-2 при периодической дозировке в сточные воды 2 кг/м в течение 24 ч через 3-6 мес. [c.172]

    Присутствие сульфат-анионов в пластовой воде, наличие продуктов жизнедеятельности УОБ создают предпосылки для развития СВБ, продуцирующих сероводород. Данные табл. 5.2 показывают, что в воде, добываемой из скважин, реагировавших на закачку АСК, биозараженность несколько выше, причем как по тионовым и сульфат-восстанавливающим, так и по углеводородокисляющим бактериям. Это объясняется тем, что микроорганизмы в пласте образуют биоценоз, связанный пищевыми цепями, и продукты жизнедеятельности одних микроорганизмов поддерживают другие. [c.127]

    Роль УОБ в данном сообществе сводится к потреблению в процессе жизнедеятельности кислорода и формировании анаэробной среды, окислении углеводородов нефти с образованием промежуточных продуктов неполного окисления - спиртов, альдегидов, которые в создавшихся анаэробных условиях потребляются СВБ в ходе питания. Тионовые бактерии, потребляя кислород, как и УОБ, способствуют созданию анаэробных условий для СВБ. Следует отметить, что в процессе своего развития тионовые бактерии способны окислять не только серу, пирит, но и продукты жизнедеятельности СВБ - сульфиды, сероводород - в сульфаты, являющиеся важным компонентом энергообразующего процесса для СВБ. В процессе жизнедеятельности тионовых бактерий обеспечивается круговорот серы, столь важный для взаимного существования этих микроорганизмов и СВБ. [c.127]

    В результате проведенных исследований было установлено, что закачка алкилированной серной кислоты способствует осерне-нию добываемой нефти. Во-первых, моноалкилсульфаты являются поверхностно-активными веществами, поэтому происходит доотмыв асфальтено-смолистых веществ. Такой же эффект создают образующиеся в результате реакции сульфирования анионактивные ПАВ. В последнем случае закачиваемая в виде серной кислоты сера оказывается связанной преимущественно с полярными соединениями и концентрируется в асфальтено-смолистых компонентах нефти. Кроме того, причиной увеличения осерненности нефти служит жизнедеятельность бактериального сообщества - УОБ, СВБ и тионовых бактерий. [c.128]

    Одним из последствий сернокислотного воздействия оказалось увеличение численности микроорганизмов. Образование сероводорода вследствие микробиологических процессов повышает токсичность и коррозионную опасность пластовых флюидов. Под воздействием биоценоза СВБ, УОБ и тионовых бактерий в нефтяных пластах протекает процесс преобразования нефти - уменьшается доля метановых и нафтеновых углеводородов, снижается содержание бициклической и возрастает содержание моноциклической и поли-циклической ароматики, изменяется качественный и количественный состав асфальтово-смолистых компонентов. В элементарном [c.128]

    Бногидрометаллу ргия основана на применении ав-тотрофных бактерий (гл. обр. тионовых) для выщелачивания и, Си н др металлов из сульфидных минералов нли в присут. сульфидных минералов, а также для удаления примесей сульфидных минералов (пирита, арк енопирита и др.) нз серебряных и золотых руд или нз каменного угля и др. материалов. [c.564]

    Большую роль в зонах сульфидной минерализации и обнажения коры выветривания играет микробиологическое выщелачивание. Скорость его примерно в 1000 раз превышает скорость химического разрушения минералов и горных пород. Этот процесс осуществляется высокоспециализированными тионовыми бактериями рода ТЫоЬасШив. Один из представителей этого рода - ТН. еггоох1йап8 окисляет, как можно понять из его родового названия, железосодержащие сульфидные минералы (пирит [c.39]

    По данным публикаций Унипромеди (1986), интенсифицирую-щее действие тионовых бактерий при перколяционном выщелачивании сульфидных медных и медно-цинковых руд составляет от 30 до 270 %. Но микробиологические исследования на действующих установках кучного и подземного выщелачивания показали что содержание имеющихся в растворах и рудной массе бактерий (Ю —10 клеток) недостаточно для обеспечения активных процессов окисления сульфидов и оксида железа (И). [c.152]

    В Институте биофизики СО АН СССР создан электрохимический активатор, в котором можно получать высококонцентриро-ванную биомассу тионовых бактерий (10 —10" кл/мл). [c.152]


    Тионовые бактерии — это мелкие одиночные клетки, которые при окислении сероводорода не отлагают серы в клетке и на ее поверхности. Энергию окисления восстановленных соединений серы в серную кислоту они используют для поддержания всех процессов жизнедеятельности, для ассимиляции углерода из СОг (они относятся к облигатным хемоавтолитотрофам). [c.130]

    Основное же количество энергии тионовые бактерии получают в результате переноса образующихся при окислении восстановленной серы электронов, поступающих в дыхательную цепь на уровне цитохрома а (см. рис. 97). Дыхательная цепь тионовых бактерий содержит все типы переносчиков, характерных для аэробных хемогетеротрофов. У тионовых бактерий обнаружены флавопротеины, убихиноны, Ре8-белки, цитохромы типа Ь, с, цитохромоксидазы о, d, а + [c.372]

    В большинстве случаев конечным акцептором электронов служит Оз, который не может быть заменен никаким другим акцептором. Рост отдельных штаммов возможен в микроаэробных условиях. Некоторые тионовые бактерии являются факультативными аэробами они могут использовать в качестве конечного акцептора электронов не только Оз, но и нитраты, восстанавливая их до N3 или только до нитрита. В анаэробных условиях использование нитратов в качестве конечного акцептора электронов индуцирует синтез диссимиляционной нитратредуктазы, осуществляющей перенос электронов дыхательной цепи на нитраты. [c.372]

    Наличие бентосных организмов в открытых водных источниках имеет весьма существенное значение для характеристики этих источников. В зависимости от экологических факторов эти микроорганизмы подразделяют на морские, пресноводные, микроорганизмы соленых озер, болот, ручьев, рек, водопадов, горячих ключей и минеральных источников. В пресноводных источниках бентосные микроорганизмы принимают участие в очистке воды органические вещества они минерализуют, а восстановленные вещества неорганического происхождения окисляют доминирующая роль в этих процессах принадлежит микробам. Самым богатым на бактерии является поверхностный слой ила, который оказывает весьма существенное влияние на развитие и жизнедеятельность микроорганизмов в водоемах и водотоках. В самоочищении вод значительная роль принадлежит нитчатым серо- и железобактериям. Первые окисляют сероводород в соли серной кислоты, чем предохраняют рыбу от гибели вторые — железо (П) в железо (П1). На дне водоемов происходят также процессы брожения с образованием метана и углекислоты.В 1 г ила содержится от 100 тыс. до 1 млн. бактерий, восстанавливающих сульфаты от 10 до 100 тыс. тионовых, около 1000 нитрифицирующих, от 10 до 100тыс. денитрифицирующих бактерий около 100 анаэробных и такое же количество аэробных разрушителей клетчатки, В иле встречаются также бактерии, окисляющие метан и водород, возбудители брожения, анаэробный фиксатор атмосферного азота и др. [c.193]

    Тионовые бактерии, окисляющие серу в присутствии кислорода, относятся к роду Thioba illus. Это подвижные неспорообразующие микроорганизмы, представляющие собой одинаковые клетки размером от 0,5 до 1,5 мкм. Клетки движутся посредством одного полярного жгутика. Энергию для построения клеточного вещества эти бактерии получают при окислении серы, тиосульфатов и других серусодержащих соединений. Конечным продуктом окисления являются сульфаты и серная кислота, которая вызывает сильное снижение pH окружающей среды. Встречаются галофильные и термофильные виды, которые могут развиваться в высокоминерализованных водах (до 25% Na l) и при высоких температурах (до 80 °С). Они могут существовать даже в 10%-ной серной кислоте. Механизм окисления серы в серную кислоту полностью не выяснен. [c.58]


Смотреть страницы где упоминается термин Бактерии тионовые: [c.20]    [c.84]    [c.20]    [c.128]    [c.29]    [c.287]    [c.84]    [c.21]    [c.150]    [c.150]    [c.214]    [c.131]    [c.65]    [c.111]    [c.369]    [c.371]    [c.371]    [c.371]    [c.372]    [c.372]    [c.379]    [c.91]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.59 , c.60 ]

Микробиология Изд.2 (1985) -- [ c.33 ]




ПОИСК







© 2024 chem21.info Реклама на сайте