Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление неорганических веществ

    Сульфиды молибдена и вольфрама являются активными катализаторами в реакциях деструктивного гидрирования и восстановления неорганических веществ. Однако в настоящем обзоре эти процессы детально не рассматриваются. [c.89]

    Восстановление неорганических веществ [c.1064]

    Величина и природа водородного перенапряжения влияют на многие электрохимические процессы. Так, протекание катодного восстановления неорганических веществ, а также электроосаждение металлов и их самопроизвольного электрохимического разрушения, зависят от механизма выделения водорода на металле. [c.369]


    Изучение водородного перенапряжения позволяет выяснить механизм этой реакции и представляет большой интерес с теоретической точки зрения. Установленные при этом закономерности можно частично распространить и на другие электрохимические реакции, что значительно повышает теоретическую значимость работ по водородному перенапряжению. Изучение водородного перенапряжения имеет также большое практическое значение, потому что современная промышленная электрохимия является преимущественно электрохимией водных растворов, и процессы электролитического разложения воды могут накладываться на любые катодные и анодные реакции. Водородное перенапряжение составляет значительную долю напряжения на ваннах по электролизу воды и растворов хлоридов. Знание природы водородного перенапряжения позволяет уменьшить его, а следовательно, снизить расход электроэнергии и улучшить экономические показатели этих процессов. В других случаях (электролитическое выделение металлов, катодное восстановление неорганических и органических веществ, эксплуатация химических источников тока) знание природы водородного перенапряжения позволяет успешно решать обратную задачу — нахождение рациональных путей его повышения. Все эти причины обусловили то, что изучение процесса катодного выделения водорода и природы водородного перенапряжения всегда находилось и находится в центре внимания электрохимиков. [c.397]

    Азотсодержащие вещества (аммонийные соли, нитриты и нитраты) образуются в воде главным образом в результате разложения белковых соединеннй, попадающих в водоем со сточными бытовыми и промышленными водами. Реже в воде встречается аммонийный азот минерального происхождения, образовавшийся в результате восстановления неорганических азотистых соединений. Если причиной образования аммиака является гниение белков, то такие воды не пригодны для питья. [c.132]

    Сернистая кислота. Используется в качестве восстановителя для получения в свободном виде ряда неорганических веществ, а также для восстановления хинонов и других органических соединений. [c.96]

    Индикаторы — органические и неорганические вещества, изменяющие окраску в зависимости от условий среды (концентрации ионов гидроксония, металла, соотношения окисленной и восстановленной форм вещества и др.) [c.438]


    В качестве примера можно привести обобщение сведений о химических реакциях (см. схемы 7 и 8, с. 86 и 87). Основная цель заданий 5 и 6 на с. 81 — помочь вам провести сравнительный анализ изученных ранее типов химических реакций и получить обобщенные знания о них. Учебный материал о реакциях разложения, соединения, замещения, обмена, окислительно-восстановительных процессах, реакциях, протекающих по радикальному и ионному механизму и т. д., вы изучали в курсах неорганической и органической химии. При этом вы, может быть, и не задумались над тем, происходит ли процесс окисления-восстановления в конкретной реакции соединения или разложения, т. е. характерна ли данная реакция только для неорганических веществ или является общей как для неорганических, так и для органических веществ. Чтобы ответить на эти и другие вопросы, следует сравнить большое число конкретных химических явлений и выяснить, что в них общее и чем они отличаются друг ОТ друга, в результате такого сравнительного анализа вы и сможете обобщить знания о них. [c.3]

    Наиболее важна и многообразна группа химических процессов, связанных с изменением химического состава и свойств веществ. К ним относятся процессы горения — сжигание топлива, серы, пирита и других веществ пирогенные процессы — коксование углей, крекинг нефти, сухая перегонка дерева электрохимические процессы — электролиз растворов и расплавов солей, электроосаждение металлов электротермические процессы — получение карбида кальция, электровозгонка фосфора, плавка стали процессы восстановления — получение железа и других металлов из руд и химических соединений термическая диссоциация — получение извести и глинозема обжиг, спекание — высокотемпературный синтез силикатов, получение цемента и керамики синтез неорганических соединений — получение кислот, щелочей, металлических сплавов и других неорганических веществ гидрирование — синтез аммиака, метанола, гидрогенизация жиров основной органический синтез веществ на основе оксида углерода (II), олефинов, ацетилена и других органических соединений полимеризация и поликонденсация — получение высокомолекулярных органических соединений и на их основе синтетических каучуков, резин, пластмасс и т. д. [c.178]

    Биосинтез начинается с фотосинтеза [1]. Вся жизнь на Земле зависит от способности некоторых организмов (зеленых растений, водорослей и фотосинтезирующих бактерий), содержащих характерные фотосинтезирующие пигменты, использовать энергию солнечной радиации для синтеза органических молекул из неорганических веществ — диоксида углерода, азота и серы. Продукты фотосинтеза служат затем не только исходными веществами, но и источником химической энергии для всех последующих биосинтетических реакций. Обычно принято описывать фотосинтез только как процесс образования углеводов в некоторых случаях основными продуктами фотосинтеза, действительно, являются исключительно крахмал, целлюлоза и сахароза, однако в других организмах на синтез углеводов идет, быть может, всего лишь третья часть углерода, связываемого и восстанавливаемого в процессе фотосинтеза. При ближайшем рассмотрении оказывается, что нельзя провести четкую границу между образованием продуктов фотосинтеза и другими биосинтетическими реакциями в клетке, в которых могут участвовать промежуточные вещества фотосинтетического цикла восстановления углерода. [c.396]

    Сам процесс восстановления органических соединений на ртутном капающем электроде, в отличие от неорганических веществ, обладает рядом особенностей. [c.28]

    Что касается применения полярографического метода для качественных определений, то на основании имеющегося опыта можно сделать вывод, что эта сторона (качественный анализ) является одной из слабых сторон полярографии, по-видимому, как и любого другого физико-химического метода анализа. Основным ограничением для широкого применения полярографии в качественном анализе как органических, так и неорганических веществ является, в первую очередь, узость диапазона значений потенциалов, где происходят процессы, фиксирующиеся с помощью полярографа. Это обстоятельство обусловливает близость значений полуволн различных веществ. Кроме того, на величины потенциалов полуволн значительное влияние оказывает состав фона и некоторые другие факторы, в том числе, например, наличие поверхностно-активных веществ и другие, особенно при необратимом восстановлении исследуемых соединений. [c.60]


    Особого внимания заслуживает полярография - один из вольт-амперометрических методов, основанный на получении и анализе кривых сила тока - потенциал на электроде из жидкого металла, поверхность которого периодически или непрерывно обновляется (рис. 36.6). Чаще всего применяется ртутный капающий электрод. Кривые сила тока - разность потенциалов (по отношению к электроду сравнения, потенциал которого не изменяется в ходе анализа) снимаются при медленном повышении напряжения. При достижении потенциала восстановления анализируемого вещества происходит увеличение силы тока до некоторой высоты волны , пропорциональной концентрации этого вещества. Таким образом, можно качественно (по потенциалу полуволны, почти не зависящему от концентрации) и количественно определять любые неорганические и органические вещества, способные к электрохимическим превращениям на электродах. Метод не требует предварительного разделения смесей и обладает высокой чувствительностью - позволяет определять малые концентрации веществ (вплоть до 10 моль л" ). [c.456]

    Fe " и др.) с соответствующим восстановлением О2. Наконец, прокариоты могут окислять органические и неорганические вещества с использованием в качестве конечного акцептора электронов не молекулярного кислорода, а целого ряда органических и неорганических соединений (фумарат, СО2, NO3, S , SO , 80з и др.). Количество освобождающейся энергии определяется градиентом окислительно-восстановительных потенциалов при переносе электронов от донора к акцептору. Так, окисление Н2 молекулярным кислородом сопровождается освобождением значительно больщего количества свободной энергии (АGo =-238 кДж/моль), чем окисление НАД Н2 фумаратом =-68 кДж/моль). [c.96]

    Подобный метод для ртутного капельного электрода был предложен Марком, Смитом и Рейли [54]. Электрод поляризовался постоянным током, величина которого в течение всего времени электролиза была ниже предельного диффузионного тока изучаемого деполяризатора. Параллельно электроду подключался конденсатор емкостью 20 мкф, чтобы избежать слишком больших катодных потенциалов (при которых был возможен разряд фона) в начальный период жизни капли, когда плотность тока на ней была очень высока. При присоединении конденсатора изменение потенциала электрода в течение жизни капли не превышало 20 мв и весь пропускаемый через раствор ток расходовался на электролиз деполяризатора. Этим методом упомянутые авторы определили числа электронов при восстановлении ряда органических и неорганических веществ. [c.250]

    Зависимость от периода капания по уравнению (10) была проверена на примере необратимых волн восстановления неорганических [10, 39] и органических [40] веществ. [c.10]

    Применение калориметрических методов для определения теплот образования неорганических веществ представляет, как правило, более сложную задачу. Во многих случаях теплоты образования неорганических соединений могут быть вычислены на основании измерений теплот сгорания, однако этот метод здесь не имеет такого универсального значения, как для органических веществ. Наряду с измерениями теплот сгорания широко используются измерения теплот растворения, гидролиза, хлорирования, замещения, восстановления и т. п. Конечный состав продуктов реакций, используемых для определения теплот образования неорганических соединений, во многих случаях сложен, и их химический анализ не всегда может быть выполнен с достаточной точностью. Эти обстоятельства приводят к необходимости использовать при вычислении теплот образования неорганических соединений данные по тепловым эффектам ряда реакций и снижают точность получаемых величин. [c.155]

    Различают две стадии процесса очистки, протекающие с различной скоростью адсорбцию нз сточных вод тонкодисперсной и растворенной примеси органических и неорганических веществ поверхностью тела микроорганизмов и разрушение адсорбированных веществ внутри клетки микроорганизмов при протекающих в ней химических процессах (окисление, восстановление). [c.119]

    Волны для необратимых органических реакций обычно вытянуты вдоль оси потенциалов, и поэтому их распознавание и количественное измерение менее точны, чем волн, получаемых с неорганическими веществами. Обычно необходимо отдельно определять кривую остаточного тока на контрольном растворе, содержащем фон, буфер и вещество, подавляющее максимум. Исправленное значение тока получают вычитанием величины остаточного тока из средней величины наблюдаемого тока, измеренного при том же напряжении. Часто достаточно использовать метод отдельных измерений, при котором измеряют ток при определенных потенциалах до и после восстановления. [c.364]

    Определению кислорода мешают также вещества, которые выделяют иод или в кислой среде реагируют с иодом. Окисление иодида до иода, приводящее к положительной ошибке определения, вызывают, например, свободный хлор, хлорамин, двуокись хлора, нитриты, бихромат, перманганат, железо (III) и перекиси. Восстановление иода до иодида, Приводящее к отрицательной ошибке определения, вызывают, например, сульфиты и сульфиды. Некоторые органические соединения приводят к отрицательной ошибке при определении кислорода, так как они окисляются выделенным иодом или реагируют с ним (реакции присоединения и замещения). Некоторые неорганические вещества, в частности железо (II), и некоторые органические соединения влияют на определение, поскольку в щелочной среде они легко окисляются растворенным кислородом. Указанные влияния устраняют способом, описанным в п. г. и д . [c.83]

    Некоторые сенсибилизированные реакции восстановления и окисления рассмотрены в гл. 1П и IV. Можно привести примеры сенсибилизирующего действия органических веществ на фотохимическое восстановление це-рия(1У) до церия(1П) [287]. Многие красители сенсибилизируют фотохимическое окисление ряда органических и неорганических веществ [411], в том числе же-леза(П), щавелевой кислоты, иодидов, мышьяка(Ш), сульфитов.  [c.97]

    Анализ полярограмм, так же как и для неорганических веществ, позволяет судить о наличии (или отсутствии) промежуточных продуктов восстановления, количестве электронов г, принимающих участие в реакции, концентрации восстанавливающихся веществ, их природе. [c.120]

    Первый способ отсчета удобнее для реакций, протекающих по схеме (I), т. е. для окислительно-восстановительных реакций, проходящих с изменением валентности ионов,—ионных реакций. Подобные реакции, как правило, характерны для неорганических соединений. Процессы окисления — восстановления органических веществ в подавляющем большинстве случаев идут с участием водорода или кислорода, т. е. по схемам [c.166]

    ОЧИСТКИ, однако большую часть воды, забираемой из различных источников, необходимо обрабатывать для улучшения ее качества до требуемого уровня. Основная функция очистки воды для городского водоснабжения заключается в удалении нежелательных примесей, содержащихся в стоках бытового и промышленного происхождения. Загрязнениями являются человеческие испражнения, отходы обработки пищи и всевозможные разновидности органических и неорганических веществ, находящихся в производственных стоках. Сточные воды очищают для улучшения их качества перед сбросом в поверхностные водные источники. Традиционная технология обработки, включающая биологическую очистку, соответствует самой низкой допустимой степени очистки сточных вод. Для обеспечения возможности непрямого повторного использования этой воды необходимо существенное разбавление стоков в естественных водоемах. В некоторых случаях, когда невозможно обеспечить достаточное разбавление, могут быть применены усовершенствованные способы очистки сточных вод (доочистка) для удаления остаточных органических примесей, фосфатов, азотных соединений и других загрязнений. Регенерация воды представляет собой комбинацию обычных и усовершенствованных способов очистки, применяемых для восстановления качества сточной воды до первоначального состояния, когда становится возможным ее повторное использование. Применение такой воды для общественного водоснабжения не допускается, однако она может использоваться для сельскохозяйственных и промышленных нужд. [c.114]

    Восстановленные неорганические вещества. Выпуски сточных вод бумажных фабрик являются потенциальным источником больших количеств сульфид-восстановительных соединений [95]. Имеются работы, посвященные изучению токсичности H2S для водорослей и простейших [96, 97]. В частности, было отмечено, что простейшие перемещаются из природных слоев, содержащих сероводород, не достигая ири этом вышерасположенной зоны повышенного содержания растворимого кислорода. В результате простейшие обнаруживались в значительных количествах лишь в узком слое воды. За исключением сапропелических видов, сероводород более токсичен для простейших, чем такие газы, как водород, двуокись углерода или метан [98]. [c.220]

    При электролизе (электрохимическом разложении) растворов органических и особенно неорганических веществ нередки случаи, когда на электроде электрохимической ячейки протекает только одна реакция. Если электролиз проводят в условиях, когда смешение катодных и анодных продуктов исключено, то все количество электричества, прошедшее через раствор в процессе электролиза, расходуется только на окисление (анодная реакция) или восстановление (катодная реакция) единственного вещества. Измерив количество электричества, израсходованного за время протекания реакции до полного раз-ложения реатрующего вещества, можно определить сод )жа-ние этого вещества, основываясь на известных заишах эяек- [c.251]

    Подобное единообразие в толковании сущности реакций между неорганическими веществами пока отсутствует. Самые широкие обобщения такого рода дает теория кислот и оснований Усановича [6]. Связывая электронный обмен с отщеплением или соответственно с присоединением ионов, она обнаруживает внутреннюю взаимосвязь между процессами протолиза, осаждения и растворения, комплексообразования и окисления — восстановления. В конечном счете эта обобщающая теория исходит из рассмотрения координационных свойств участвующих в реакции частиц и предлагает силу кислот и оснований оценивать по соответствующему ионному потенциалу. [c.47]

    Процессы электрохимического восстановления в химической технологии неорганических веществ применяются крайне редко. Почти единственным примером такого процесса является получение гидросульфита натрия N328204 (гидросернистокислый натрий). Эта соль — сильный восстановитель и применяется при синтезе органических красителей и в процессах окрашивания тканей. [c.436]

    Электросинтез неорганических веществ. Пром. получение неорг. окислителен основано гл. обр. на анодном процессе (электроокислении), катодные процессы находят офаниченное применение. Анодные процессы проводят, как правило, в бездиафрагменных электролизерах, используя в качестве катодов сталь. Ддя подавления нежелат. процессов восстановления в р-р добавляют дихромат натрия образующаяся на катоде хромит-хроматная пленка предотвращает восстановит, процессы. [c.455]

    Согласно многим методикам, объемистый бурый осадок отфильтровывают, тщательно промывают водой, как в описанг-юм выше опыте, и даже экстрагируют в аппарате Сокслета для полного извлечения продукта реакции, который часто очень прочно адсорбируется осадком. Энергичное кипячение приводит к коагуляции осадка и ускоряет фильтрование, однако эта операция требует времени. Во всех случаях получают большой объем водного раствора, из которого после подкисления извлекают продукт реакции путем испарения и экстрагирования растворителями. Там, где это применимо, более простой методикой является подкисление реакционной смеси и пропускание сер1и1Стого газа (или добавление ЫаН80 )+НС1) для восстановления МпО до растворимого сульфата. Таким путем удается избежать длительного процесса фильтрования и промывки и уменьшить объем водного раствора, так как растворенное неорганическое вещество снижает растворимость органического соединения. Вероятно, многие методики, в которых рекомендуется отделять Л пОо фильтрованием, можно улучшить, если ввести восстановление сернистым газом. [c.86]

    В последние годы в зарубежной литературе появились сообщения о некоторых новых вариантах кулопометрического анализа. Например, предложен новый способ кулонометрии [650], в котором определяемые органические и неорганические вещества количественно адсорбируются на электроде, изготовленном из ацетиленовой газовой сажи , и подвергаются на нем электролитическому восстановлению или окислению. Такая методика исключает трудности, связанные с необходимостью обеспечивать тесный контакт между электродом и реагирующими веществами в процессе электролиза. Метод применим к веществам, плохо растворимым в водных растворах. Адсорбцию определяемого соединения можно осуществлять не только из жидкой, но такжр и из газовой фазы, что особенно важно для применения этого способа к определению малых количеств веществ в воздухе и газовых смесях. Анализируемый раствор пропускают через сажевый элект- [c.70]

    Электрохимическое поведение органических соединений обладает рядом характерных особенностей, отличающих их от неорганических веществ. Эти особенности обусловлены [841] а) заметной адсорбируемостью органических деполяризаторов на поверхности электрода, приводящей обычно к значительному ускорению электродных и приэлектродных процессов б) участием в потенциал-определяющей стадии ионов водорода в) тормозящим влиянием продуктов электродной реакции, если их поверхностная активность выше, чем у исходных соединений (иногда торможение обусловлено почти полным заполнением поверхности адсорбированным деполяризатором [438, 784]) г) способноетью некоторых органических соединений образовывать водородные связи или иным образом взаимодействовать с растворителем. Поэтому при изменении состава растворителя наряду с явлениями, характерными для волн разряда неорганических деполяризаторов, которые обусловлены изменениями коэффициентов диффузии и активности ионов (см., например, обзоры К. Швабе [842, 843], работы Я. И. Турьяна и сотр. [844—846], И. Тати и Р. Такахаши [847, 848], а также других исследователей [849—852]), в случае волн восстановления органических соединений наблюдаются дополнительные эффекты [841], связанные с перечисленными особенностями их электрохимического поведения. [c.248]

    При использовании в качестве анода железных или алюминиевых электродов происходит их электролитическое растворение, при котором в сточную воду переходят ионы этих металлов, превращающиеся в гидроксиды или основные соли этих металлов, обладающие коагулирующей способностью. На этом принципе основан процесс электрокоагуляции загрязнений сточных вод. При электрокоагуляции сточных вод, содержащих тон-кодиспергированные загрязнения, могут идти и другие электрохимические и физико-химические процессы, такие как электрофорез, катодное восстановление растворенных в воде органических и неорганических веществ, химические реакции между ионами железа или алюминия и содержащимися в воде ионами с образованием нерастворимых солей. Поэтому эффект очистки воды при электрокоагуляции в ряде случаев более высокий, чеМ при ее обработке одинаковыми, в пересчете на металл, дозами солевых коагулянтов. При использовании нерастворимых электродов пузырьки выделяющихся газов сорбируют на своей поверхности загрязнения и, поднимаясь вверх, увлекают их за собой. На этом принципе основан процесс электрофлотации. [c.110]

    Ряд японских авторов [1] описал переменнотоковое поведение флавинмонопуклеотида при разных pH, на различных фонах. На переменнотоковых полярограммах обнаруживается основной пик восстановления и адсорбционный пик. При pH 6 образуется один смешанный пик. Величины пиков линейно зависят от концентрации. Исследованию методов переменнотоковой полярографии тиамина о-монофосфата и его бензоилпроизводного посвящена работа Окамото [2, 3]. Автор показывает зависимость пика от pH раствора, определяет его температурный коэффициент, указывает на прямолинейную зависимость высоты пика от концентрации. Полярографические данные позволили автору предположить механизм реакции восстановления этих соединений. Позднее с помощью сконструированного осциллографического квадратно-волнового полярографа этот же автор [4] наряду с неорганическими веществами исследовал ряд органических соединений цистин, витамин Вд, н. октиловый и н. пропиловый спирты и другие вещества. В работе показано преимущество предложенного переменнотокового полярографа для решения некоторых теоретических вопросов аналитические вопросы рассмотрены сравнительно мало. [c.150]


Смотреть страницы где упоминается термин Восстановление неорганических веществ: [c.144]    [c.167]    [c.507]    [c.104]    [c.127]    [c.517]    [c.377]    [c.74]    [c.86]    [c.748]    [c.138]    [c.328]    [c.125]   
Смотреть главы в:

Химия гидридов -> Восстановление неорганических веществ




ПОИСК





Смотрите так же термины и статьи:

неорганических веществ



© 2025 chem21.info Реклама на сайте