Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление диоксида серы механизм

    Каталитические методы окисления диоксида серы. Известно несколько способов окисления диоксида серы, отличающихся применяемым катализатором и механизмом. [c.60]

    Иваненко С. В. Различные механизмы и кинетика окисления диоксида серы на ванадиевых катализаторах. // Журнал прикладная химия. - 988.-61.-№9.-С. 1958-1964. [c.69]

    Механизм действия железного катализатора близок к механизму действия ванадиевого катализатора окисления диоксида серы (рис. 13.10) и представлен на рис. 14.9. [c.198]


    По механизму гетерогенного катализа протекают реакции синтеза аммиака при получении азотной кислоты, окисления диоксида серы в триоксид при контактном способе получения серной кислоты и т. д. [c.109]

    При молекулярном механизме каталитической реакции происходит обмен атомами между катализатором и реагирующими веществами. Примером молекулярного механизма газовых каталитических реакций может служить перенос атома кислорода или хлора так протекает окисление диоксида серы оксидами азота  [c.222]

    Многие переходные металлы и их комплексы обладают каталитической активностью и широко применяются в промышленных каталитических системах, например, оксид ванадия(У) при окислении диоксида серы для получения серной кислоты, мелкодисперсное железо, оксид железа(Ш) - при синтезе аммиака. Особенно активны в этом отношении переходные элементы второго и третьего переходных рядов и, в частности, платиновые металлы. Так, мелкодисперсная платина и ее сплавы используются при окислении аммиака, металлорганические соединения родия и иридия - в разнообразных реакциях органического синтеза. В гл. 11 мы отмечали, что среди разнообразных механизмов действия этих и других катализаторов можно выделить несколько стадий, присущих каждому каталитическому процессу. Попытаемся теперь проследить за действием металлокомплексного катализатора на основных стадиях процесса  [c.373]

    Исходя из механизма окисления диоксида серы, предложена методика определения оптимального температурного режима контактного аппарата с помощью ЭВМ. Для адиабатического процесса (в контактных аппаратах с промежуточным теплообменом) справедливо равенство [c.301]

    III.3.3. Механизм и кинетика окисления диоксида серы [c.157]

    В настоящее время в производстве серной кислоты применяют два способа контактный и нитрозный. В обоих случаях технологический процесс протекает по одному и тому же механизму, а именно получение диоксида серы и окисление его до триоксида. Различие состоит лишь в методе окисления SO2 до SO3. При контактном способе SO2 непосредственно соединяется с кислородом воздуха в присутствии твердого катализатора в специальном контактном аппарате  [c.110]

    Метод модификации пористой структуры активными компонентами реализован при синтезе нанесенных катализаторов окисления диоксида серы КС, ЛТИ-Ц, АС, ВЛТ. Катализаторы получены путем пропитки носителей аморфного алюмосиликата [51 [, силикагеля [75], цеолит- и асбестсодержащего алюмосиликата (а. с. СССР 929211) [83] раствором солей ванадия с последующей их термической обработкой. Механизм формирования пористой структуры всех перечисленных катализаторов в основе своей одинаков [51 ]. Рассмотрим его на примере катализатора с использованием алюмосиликатного аморфного носителя. Как известно, последний является материалом, имеющим вполне определенную, сформировавшуюся глобулярную пористую структуру [51, 65]. Радиус большинства пор составляет доли единиц и единицы на- [c.79]


    Известно несколько способов окисления диоксида серы, различающихся природой применяемого катализатора и механизмом пиролюзитный, озоно-каталитический, жидкостно-контак-тный, радикально-каталитический, метод фирмы Монсанто . [c.112]

    Наиболее детальные исследования механизма электроокисления SO2 были проведены на вращающемся пирографитовом электроде [184] и на тонком плавающем электроде из активированного угля АГ-3 и других углеродных материалов с равнодоступной поверхностью [185]. Значение стационарного потенциала в 0,5 М H2SO4 при давлении i so2=98 кПа составляет на пирографите 0,65 В и на активированном угле —0,35—0,40 В. Электрокаталитическая активность углеродных материалов в реакции окисления диоксида серы уменьшается в ряду активированный уголь > графит > сажа (рис. 64). Посадка на углеродные материалы кислых оксидов приводит к снижению скорости реакции. Характер поляризационных кривых на высокодисперсных углеродных материалах указывает на возможность протекания вблизи стационарного потенциала как окислительных, так и восстановительных реакций с образованием восстановленных частиц SO2. При более отрицательных потенциалах наблюдается стационарный процесс восстановления SO (рис. 65). [c.150]

    Система ЗОг—НгО—НгЗО отличается большой сложностью, что затрудняет количественную интерпретацию наблюдаемых кинетических параметров. В работах [181, 182] было высказано предположение, что окисление диоксида серы на графите происходит по химическому механизму при взаимодействии с оН-ра-дикалами, образовавшимися при разряде воды. Однако, как следует из данных, представленных в I части монографии, вода в рассматриваемой области потенциалов на углеродных материалах не разряжается. Значение величин стационарного потенциала, устанавливающегося на углеродных материалах в раство-)ах, содержащих ЗОз, указывает, по мнению авторов работы 183], на большую вероятность протекания реакций, приводящих к образованию дитионовой кислоты. В этом случае можно ожидать, что реакция будет иметь второй порядок по ЗОг. Однако ни на пирографите, ни на активированном угле величина дlg ] /д ц Раоц не превышала 1. Это дает основание считать, что на углеродных материалах электровосстановление ЗОа протекает до серной кислоты без промежуточного образования дитионовой кислоты по механизму, включающему стадию прямого отрыва электронов от окисляемой частицы. [c.152]

    Особенности эксплуатации контактного узла. При окислении диоксида серы отходящих сернистых газов в контактный аппарат попадают примеси, отравляющие ванадиевый катализатор. В контактных массах во всех слоях обнаруживают мышьяк, фтор, селен, ртуть, сульфаты и окислы цинка, свинца, меди, кадмия, железа. Механизм воздействия на катализатор мышьяка и фтора такой же, как и при окислении газов от обжига колчедана. Сульфаты и окислы цинка и меди снижают активность катализаторов, образуя двойные соли типа Ме504-Н2504. Примеси газа также механически экранируют поверхность зерен катализатора при их адсорбции, капиллярной конденсации или осаждения в порах, затрудняя доступ реагирующих веществ к активным центрам. [c.291]

    Недостаток ииродюзитного метода заключается в том, что ири увеличении концентрации кислоты окисление замедляется, ири концентрации 20% —практически прекращается. Это связано со снижением растворимости кислорода и диоксида серы в растворе серной кислоты и нарушением цепного механизма процесса. [c.61]

    Легко происходит элиминирование серы в различных состояниях окисления из гетероциклических молекул эти реакции изучались с точки зрения механизма и синтетической применимости. Сульфолен (12) при 100—15 0 С распадается па диоксид серы и г/70яс,т/7С1 с-гексадиен-2,4 из (13) соответственно образуется чис,граис-гексадиен-2,4  [c.209]

    Ванадиевая контактная масса представляет собой пористую основу, на которую нанесено активное комплексное соединение, содержащее пентоксид ванадия. Точные данные о составе веществ, образующихся в ванадиевой контактной массе, отсутствуют. Не установлен полностью также механизм окисления 50г на этом катализаторе. Существует несколько теорий этого сложного процесса. Рассмотрим одну из них, разработанную на основе результатов многочисленных исследований плавкости соединений, составляющих ванадиевую контактную массу, рентгеноструктурного анализа этих соединений и определения активности контактных масс различного состава. Согласно этой теории, активным комплексом в ванадиевой контактной массе является соединение оксида с пиросульфатом калия УгОз-КзЗгО , которое при температуре процесса (выше 380°С) находится в виде расплава на поверхности пористого носителя. Диоксид серы и кислород, сорбируемые поверхностью катализатора и растворенные в расплаве, взаимодействуют с пентоксидом ванадия [c.144]


    В монографии систематизированы и критически обобщены имеющиеся сведения о ряде реакций синтеза и превращений органических соединений серы, протекающих в присутствии металлов, их оксидов, сульфидов и комплексов. Обсуждены закономерности процессов синтеза тиолов, диалкилсульфидов, тиацикяоалканов, тио-фенов, реакций окисления молекулярным кислородом сульфидов до сульфоксидов и сульфонов и восстановления тиолен-1,1-диоксидов в тиолан-1,1-диоксид. На основе результатов исследования, полученных с применением различных физико-химических методов, и опираясь на представления о химической сущности явления катализа, установлен механизм протекания каталитических реакций органических соединений серы и определены границы использования катализаторов. [c.2]


Смотреть страницы где упоминается термин Окисление диоксида серы механизм: [c.69]    [c.157]    [c.145]    [c.77]    [c.234]    [c.100]    [c.6]    [c.36]   
Технология серной кислоты Издание 2 (1983) -- [ c.161 ]

Технология серной кислоты (1983) -- [ c.161 ]

Технология серной кислоты (1985) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Диоксид

Диоксид серы

Окисление окисление диоксида серы



© 2024 chem21.info Реклама на сайте