Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращение микроорганизмами соединений серы

    ПРЕВРАЩЕНИЕ МИКРООРГАНИЗМАМИ СОЕДИНЕНИЙ СЕРЫ, ЖЕЛЕЗА И ФОСФОРА [c.130]

    УЧАСТИЕ МИКРООРГАНИЗМОВ В ПРЕВРАЩЕНИЯХ СОЕДИНЕНИЙ СЕРЫ, ЖЕЛЕЗА, КРЕМНИЯ И ДРУГИХ ЭЛЕМЕНТОВ [c.187]

    Не меньшее значение, чем в трансформации серы, имеют микроорганизмы и в превращениях другого элемента— фосфора, также содержащегося в почве в весьма разнообразных соединениях. [c.190]

    В почвах сера претерпевает различные химические и биохимические превращения, переходя из неорганической формы в органическую и обратно. Часть серы в виде сульфатов ассимилируется растениями и микроорганизмами. Сероводород образуется в основном в результате бактериального восстановления сульфатов и в меньшей степени - в результате разложения серусодержащих соединений отмершей биомассы растений, животных и микроорганизмов в процессе аммонификации, гниения. [c.66]


    Биологическое поглощение играет особенно большую роль в превращении нитратных соединений азота и нитратных форм азотных удобрений в почве. Легкорастворимые соли азотной кислоты, не усвоенные растениями, удерживаются в почве и предохраняются от вымывания главным образом благодаря усвоению их микроорганизмами, так как ни физически, ни физико-химически, ни химически они не поглощаются в почве. Биологическое поглощение азота, фосфора, серы и других питательных веществ микробами — [c.101]

    Таким образом, образование сернистых соединений можно понимать как вторичный процесс, не связанный с нефтеобразова-нием и, так сказать, параллельный ему. Высказывались и противоположные гипотезы, согласно которым сера является в нефтях унаследованным компонентом и что первоначально образовавшиеся нефти содержат серу как обязательный компонент, исчезающий впоследствии на длинном пути ее превращения. Из этого как будто следует, что серой должны быть богаты геологические молодые нефти, более или менее близкие к исходному веществу нефти, тогда как нефти древние, метановые, могут серы и не содержать. Это соображение плохо вяжется с тем, что очень многие третичные нефти практически серы не содержат, тогда как иногда древние нефти, наоборот, богаты серой. Примерами первых могут служить нефти Баку, Грозного и ряда других месторождений, примерами вторых могут служить сернистые нефти Второго Баку. Вместе с тем исключениями крупного масштаба являются кайнозойские нефти Калифорнии, Мексики и другие, содержащие много серы и бессернистые палеозойские нефти северо-восточных штатов США. Связь между серой и углеводородами нефти часто понималась таким образом, что сера имеет белковое происхождение и должна принимать участие-в тех процессах, которые переводят живое вещество в нефть.. Между техм хорошо известно, что разложение белка связано с выделением серы в виде сероводорода, не принимающего участие в последующих превращениях органического вещества. Ввиду того, что сероводород минерального происхонодения может внедряться в углеводороды, проходя через стадию элементарной серы, нет никакой необходимости отводить белковой сере заметную роль. Все подобные гипотезы отличаются тем, что не объясняют, почему осернение нефти не является обязательным процессом, поскольку в природе имеются значительные месторождения бес-сернистой нефти. Кроме того, в подавляющем большинстве случаев сернистость нефти есть явление региональное, охватывающее громадные области, что говорит о какой-то общей причине явления. Факт восстановления сульфатов микроорганизмами есть. [c.179]


    Необычайное богатство ассортимента ферментов, вырабатываемых микробной клеткой. Как известно, микроорганизмы обладают способностью использовать для питания и в качестве источника энергии громадное количество разнохарактерных химических соединений самые разнообразные белковые вещества углеводы — целлюлозу, крахмал, лигнин, простые сахара различные углеводороды — парафин, метан и др. множество иных органических соединений — спирты, кислоты, гетероциклические, азотистые соединения, различные органические остатки (смеси веществ), серу, железо, азот и др. Естественно, что для ассимиляции столь разнообразных химических веществ необходим сложный и разветвленный ферментативный аппарат. Многообразны также пути превращений их в клетках микроорганизмов. Обмен в них может быть весьма сложным и отличным от обмена в клетках растений и животных. [c.99]

    Он проводит аналогию между пищеварительной системой животных, в которых пища из форм, не пригодных для усвоения, превращается в формы, усвояемые живым телом и почвенными микроорганизмами, которые выполняют ту же роль в питании растений. Вряд ли кто может усомниться в огромном значении микроорганизмов в жизни почвы. Сама почва является в значительной мере продуктом жизнедеятельности микроорганизмов. Не может быть сомнений и относительно огромного значения микробиологической активности почвы для питания произрастающих на этой почве растений. Почвенные микроорганизмы, за исключением нитрифицирующих бактерий, являются гетеротрофными организмами. Они синтезируют органическое вещество своего тела за счет разложения органических остатков растений и животных и за счет гумуса почвы. Органическое вещество необходимо не только для построения тела микроорганизмов, но в процессе его разложения, его окисления освобождается энергия, необходимая микроорганизмам для проявления их жизнедеятельности. Образующиеся же в процессе разложения органического вещества минерализованные соединения азота, фосфора, серы являются источниками питания растений. Но совсем не обязательно, чтобы этот осуществляемый микроорганизмами почвы процесс освобождения питательных для растений элементов из органических их соединений происходил именно у корней растений. Наоборот, есть все основания считать, что разложение органического вещества и превращение содержащихся в нем соединений азота, фосфора и т. п. в минеральную, т. е. доступную для растений форму, наиболее энергично протекает в парующей почве, когда нет конкуренции со стороны растений за воду и кислород воздуха. Об [c.287]

    Ископаемый, или каменный, уголь состоит не из чистого углерода, а из органических соединений сложного переменного состава, содержащих также водород, кислород, азот и серу. Уголь образовался из первичных растений в результате медленных превращений в течение очень длительных периодов вначале под действием ряда микроорганизмов (в анаэробной среде, поскольку обычное гниение в аэробных условиях приводит лишь к газообразным соединениям СОг, НгО, NH3 и H2S), затем в результате химических реакций при высоких температурах и давлениях в земной коре. В результате таких превращений выделился кислород (в виде Н2О и частично СО2). Этот медленный процесс называется обугливанием. Так объясняется, почему уголь более древних геологических пластов богаче углеродом. [c.461]

    Характеристика физиолого-биохимических особенностей микроорганизмов включает описание их способности расти на разных питательных средах и вызывать определенные превращения веществ, входящих в состав этих сред. Учитывают использование различных соединений углерода, азота и серы, отношение к молекулярному кислороду, способность образовывать антибиотические вещества и проявлять ферментативную активность в отношении определенных субстратов. Проверяют чувствительность микроорганизмов к разным антибиотикам. [c.155]

    Биологическое поглохщение играет особенно большую роль в превращении нитратных соединений азота и нитратных форм азотных удобрений в почве. Легкорастворимые соли азотной кислоты, не усвоенные растениями, удерживаются в почве и предохраняются от вымывания главным образом благодаря усвоению их микроорганизмами, так как ни физически, ни физико-химически, ни химически они не поглощаются в почве. Биологическое поглощение азота, фосфора, серы и других питательных веществ микробами — явление временное после отмирания их плазма быстро минерализуется, содержащиеся в ней элементы питания освобождаются в минеральной форме и могут использоваться растениями. [c.109]

    Превращение серусодержащих соединений в природе осуществляется в основном с участием растений и микроорганизмов рис. 126), Как видно на схеме, неорганический сульфат превращается растениями и микроорганизмами в органические формы серы. Большая часть органической серы после гибели растений и лчипотных под действием микроорганизмов превращается в сероводород. Различными бактериальными организмами сероводород окисляется до сульфатов, и таким путем сера становится вновь доступной для усвоения растениями. [c.420]


    Уже было сказано, что основным стерином животного мира является холестерин. Кроме выполнения структурной функции в составе клеточных мембран, он служит субстратом для биосинтеза стероидных соединений. В организме млекопитающих большая часть эндогенного и пищевого холестерина расходуется на биосинтез желчных кислот. Последние образуются из него серией реакций окисления и восстановления, ведущих к веществам с укороченной боковой цепью и с гидроксильными заместителями в тетрацик-лическом остове. Двойная связь холестерина в ходе этих метаболических превращений насыщается, а циклы А/В оказываются г/с-сочлененными, т.е. желчные кислоты принадлежат к стереохимическому ряду копростана. Желчь человека и других млекопитающих содержит четыре основные стероидные кислоты холевую 2.987, хенодезоксихолевую 2.988, дезоксихолевую 2.989 и литохолевую 2.990. Первые две называют первичными, остальные — вторичными желчными кислотами. Деление на первичные и вторичные вводится потому, что только вещества 2.987 и 2.988 синтезируются в печени. Остальные — это продукты трансформации первых микроорганизмами кишечника. [c.274]

    Гиббереллиновая кислота — представитель класса нордитер-пенов, полученных из Gibberella fujikuroi, вызывает необычную стимуляцию роста некоторых высших растений. Их биосинтез широко исследовался вследствие возможного применения этих соединений сельском хозяйстве и из-за их интересной структуры. На отдельных стадиях окисления этой сложной серии веществ выходы довольно низкие (их обычно оценивали по проценту включения меченого атома), но эти реакции потенциально полезны с синтетической точки зрения как. для данного ряда соединение,- так и для родственных групп веществ. Эти реакции были бы Особенно интересны, если бы можно было найти штаммы микроорганизмов, которые могли бы накапливать нужный продукт. Можно также модифицировать субстрат, чтобы повысить эффективность его микробиологического окисления. Например, превращение гиббереллина А12 в гиббереллиновую кислоту протекает с выходом только 0,7%, но диол, полученный при восста- [c.36]

    В состав почвенных микроорганизмов входят различные физиологические группы, каждая из которых осуществляет одно определенное окислительное превращение сложных органических соединений в более простые. В результате происходит окисление отдельных органических компонентов до газообразных продуктов. Так, углеводы окисляются до углекислого газа и воды СбН120б- С02+Н20. Входящий в состав белка азот окисляется до нитратов К—СНКНз—СООН- ЫОз" +СО2+Н2О. Сера и фосфор, входящие в состав многих органических соединений, окисляются до соответствующих окислов  [c.180]

    Дайер отметила также, что при скармливании крысам этио-нина они теряли в весе быстрее, чем при полном исключении метионина из рациона, причем такое действие этионина снижалось при одновременном введении метионина [223]. Наблюдения Дайер неоднократно подтверждены установлено, кроме того, что этионин тормозит рост микроорганизмов [217, 220]. У крысы этионин тормозит включение глицина и серы метионина в белки тела, а также превращение метионина в цистин [221]. У самок крысы введение больших количеств этионина вызывает вскоре жировое перерождение печени это нарушение устраняется введением метионина, но не может быть снято рядом других исследованных аминокислот [226]. Этионин тормозит у крыс перенос метильной группы метионина к холину, но не влияет на образование креатина [222]. Интересно отметить, что холин, подобно метионину, оказывает благоприятное действие при интоксикации этионином [224]. После введения крысам этионина, меченного по метиленовому углероду этильной группы, значительное количество радиоактивного изотопа было обнаружено в три-метиламиновом остатке холина. Углерод этильной группы включался также в креатинин кроме того, сера этионина переходила в состав цистина [225]. Вполне очевидно, что этионин подвергается превращениям в организме крысы. Высказано предположение, что его токсическое действие обусловлено образованием этильных аналогов холина и других соединений [274, 275]. Это предположение подтверждается данными о том, что триэтилхолин подавляет рост крыс [225] и тормозит синтез [c.147]

    Радиоизотопы. Методы измерения активности микроорганизмов в их природных местообитаниях или свежих образцах с применением радиоизотопов являются наиболее чувствительными из всех существующих. Эти методы могут пролить свет на судьбу того или иного субстрата в микробных сообществах определенной экониши. Для измерения интенсивности фотосинтеза применяют метод измерения включения меченого СО2, имея контролем при этом темповую пробу. Для обнаружения и измерения скорости сульфатредукции применяют изотоп серы, который превращается в Н2 8. Скорость метаногенеза можно проследить по превращению СО2 в СН4 в присутствии значительного количества водорода или по трансформации С-метанола, метилированных аминов или ацетата в СН4. Хемоорганотрофные активности измеряют по скорости включения меченых по С органических соединений, обычно для этих целей используют глюкозу или аминокислоты. Эффект использования органики можно определять и [c.247]

    Слив отходов производства пестицидов сегодня строго контро- лируется технология очистки сточных вод или их детоксика- ции хорошо разработана, хотя остается сложной и многообразной. Она включает сначала экстракцию пестицидов растворите- лями, а затем обычную биологическую обработку. Для ликвидации непредусмотренных выбросов, происходящих при утечках или при промывке и замене контейнеров с пестицидами, подходящая технология пока отсутствует. Пестициды попадают в окружающую среду и в результате использования их для обработки сельскохозяйственных культур. Большинство пестицидов расщепляется бактериями и грибами. Превращение исходного пестицида в менее сложные соединения нередко осуществляется при участии сообществ микроорганизмов. Были описаны различные стадии и промежуточные продукты- процессов деградации--ДДТ, идущей, например, в ходе сопряженного ме-тоболизма и приводящей к полной минерализации этого стойкого пестицида. Часто из среды, содержащей ксенобиотик, можно выделить сообщества такого рода, в которых он служит не основным источником углерода, а источником фосфора, серы или азота. Чрезвычайно высокая токсичность пестицидов зачастую утрачивается на первой же стадии их модификации. Зто позволяет разработать относительно несложные микробио- [c.291]


Смотреть страницы где упоминается термин Превращение микроорганизмами соединений серы: [c.150]    [c.21]   
Смотреть главы в:

Практикум по микробиологии -> Превращение микроорганизмами соединений серы




ПОИСК





Смотрите так же термины и статьи:

Серы соединения



© 2025 chem21.info Реклама на сайте