Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лакокрасочные материалы коррозионная стойкость, ut

    Надежность и долговечность антикоррозионного лакокрасочного покрытия определяются способностью материала, из которого оно изготовлено, длительно сохранять свои свойства в условиях эксплуатации защищаемого сооружения, правильным выбором системы покрытия и точным соблюдением технологии его нанесения. Покрытие должно выполняться из водоустойчивого материала, обладающего высокими адгезионными и диэлектрическими свойствами, эластичностью, устойчивостью к истиранию и динамическим воздействиям, коррозионной стойкостью, химической инертностью по отношению к металлу трубы и биостойкостью [16—18]. [c.21]


    Электрофоретическое нанесение лакокрасочных материалов, растворимых в воде, представляет собой усовершенствованный способ погружения, недостатки которого устранены действием электростатического поля. Электрофорез основан на ориентированном перемещении коллоидных частиц в диэлектрической среде. При наложении электрического тока возникают два процесса. Первый — это электролиз, характеризующийся перемещением ионов, образовавшихся при диссоциации электролита. Второй — собственно электрофорез, т. е. движение коллоидных частиц под действием электрического поля в среде с высокой диэлектрической постоянной. Частицы в соответствии со своей полярностью движутся к одному из электродов. Отрицательно заряженные частицы движутся к аноду, т. е. к изделию. На аноде или в непосредственной близости от него происходит потеря электрического заряда и коагуляция частиц. Одновременно с электрофорезом происходит и электроосмос, т. е. процесс, при котором под действием разности потенциалов из лакокрасочного материала вытесняется диспергирующий агент, например вода, и слой загустевает. Технологическим достоинством этого способа является возможность обеспечения высокой степени автоматизации, при которой потери лакокрасочного материала не превышают 5%. Достигается равномерная толщина слоя, которую можно регулировать в пределах 8—45 мкм. Слой не имеет пор и видимых дефектов. Коррозионная стойкость его примерно в 2 раза выше, чем у лакокрасочных покрытий, полученных способом погружения. Линия, в которой использована такая технология, -в основном состоит из оборудования для предварительной подготовки поверхности, оборудования для непосредственно электрофоретического нанесения, включая соответствующую промывку, и оборудования для предварительной и окончательной сушки лакокрасочного покрытия при температуре 150—220° С в течение 5—30 мин. Способ нашел применение в автомобильной промышленности, на предприятиях по производству мебели, металлических конструкций для строительства и в других областях. [c.87]

    Процесс анодирования увеличивает прочность сцепления с лакокрасочными покрытиями, обеспечивает прочность сцепления с гальваническими покрытиями, повышает коррозионную стойкость, дает возможность окрашивать поверхность в различные цвета, повышает твердость, стойкость к износу трением, электросопротивление и теплоизолирующие свойства. С помощью анодирования можно также производить контроль качества материала изделий из алюминиевых с плавов, получать рельефные и плоские изображения, защищать алюминиевые зеркала от потускнения, изготовлять алюминиевые выпрямители и конденсаторы. [c.131]


    По коррозионной стойкости и физико-механическим свойствам покрытия, изготовленные с предварительным подогревом лакокрасочного материала, при одинаковой толщине пленки не уступают покрытиям из тех же материалов, нанесенных без подогрева и разведенных растворителем до рабочей вязкости. [c.318]

    Анодное окисление и химическое оксидирование как самостоятельные методы защиты изделий или конструкций применяются главным образом для сплавов, обладающих сравнительно высокой коррозионной стойкостью и эксплуатируемых в незагрязненном воздухе. Если сплавы эксплуатируются в жестких условиях (морская, промышленная атмосфера и т. п.) или имеют ограниченную коррозионную стойкость, то такая защита недостаточна поэтому после оксидирования на изделие наносят лакокрасочный материал. Полученное покрытие кроме защиты от коррозии служит и для декоративных целей. [c.10]

    В то же время покрытия на основе лакокрасочных материалов катионного типа обладают рядом преимуществ по сравнению с другими видами водорастворимых материалов. К ним можно отнести более высокие защитные характеристики, которые обусловлены высокой чистотой пленки, получаемой при электроосаждении, благодаря отсутствию растворения подложки, отсутствием окисления пленкообразователя (на катоде выделяется водород), более высокой плотностью образующейся пленки и щелочестойкостью, связанной с основным характером свободных аминогрупп, и др. Кроме того, в лакокрасочный материал можно вводить соли некоторых металлов (свинец, цинк и др.), которые в процессе образования пленки электролитически осаждаются на поверхности металла в виде тончайшего слоя, что повышает коррозионную стойкость поверхности. Можно отметить также, что в процессе образования покрытия в прикатодной области pH раствора составляет 10—12 (по сравнению с 2—3 у анода), что делает поверхность металла пассивной [128]. Таким образом, достоинства материалов катионного типа проявляются при нанесении их на подложку методом электроосаждеиия, который является для них основным. [c.69]

    По физико-механическим свойствам и коррозионной стойкости покрытия, полученные с подогревом лакокрасочного материала, при одинаковой толщине аналогичны покрытиям, изготовленным без подогрева. [c.150]

    Наиб, прогрессивный метод нанесения В. л. м.-электроосаждение при его использовании получают покрытия равномерной толщины на изделиях сложной конфигурации, практически без потерь лакокрасочного материала. Изделие, на к-рое наносят В. л. м., может служить как анодом, так и катодом в соответствии с этим различают анафо-резные и катафорезные В. л. м. Последние обладают большей, чем аиафорезные материалы, способностью проникать в закрытые полости деталей сложной конфигурации и при меиьшей толщине образуют покрытия с более высокой коррозионной и хим. стойкостью. Однако произ-во и применение катафорезных В. л. м. связано с нек-рыми трудностями, обусловленными их кислым характером (pH 4-6) в частности, для нанесения этих материалов м. б. использовано только кислотостойкое оборудование. [c.399]

    Для антикоррозионной защиты крупногабаритного оборудования, работающего в условиях агрессивных сред в производствах минеральных солей (концентратов, промывных башен и пр.), применяют покрытие из кислотоупорных плиток и других кислотоупоров, а также кислотоупорные цементы (кварцевый, кремнефтористый и пр.). Для защиты химической аппаратуры и строительных конструкций применяются плитки и изделия из стеклокристаллического материала, кислотоупорный клинкерный кирпич, керамические плитки и т. п. В химической промышленности распространены эмалевые покрытия. В настоящее время освоены ситталевые эмали, обладающие высокими механическими и термическими свойствами. Широкое применение для антикоррозионных целей имеют материалы из пластмасс винипласта, полиэтилена, фаолита, текстолита и пр. Одним из наиболее стойких материалов является фторопласт, обладающий коррозионной стойкостью ко всем кислотам и щелочам. Для изготовления теплообменной аппаратуры, работающей в условиях воздействия агрессивных жидкостей и газов, применяют графит, графолит и другие графитовые материалы. Для защиты аппаратуры и строительных конструкций от коррозии применяются специальные химически стойкие лакокрасочные материалы на основе перхлорвиниловой смолы, поливинилхлорида и его полимеров, лаков, эпоксидных смол и т. д. [c.87]

    При применении фосфатирования и пассивации для улучшения плотности фосфатного слоя и повышения коррозионной стойкости покрытия часто применяют горячую сушку поверхностей перед электроосаждением при температуре 100—110°С до полного удаления еле-дов влаги. После извлечения окрашенных изделий из ванны электроосаждепия производится струйная промывка их водой для удаления с поверхности пузырьков и неполностью скоагулировавшего лакокрасочного материала. Применяют двух- или трехстадийную промывку, а если время между окраской и первой промывкой составляет более 3 мин, то сразу после выхода изделий из ванны производят легкое орошение всей поверхности обессоленной водой непосредственно над ванной. Последняя промывка производится Как правило полностью обессоленной водой во избежание появления на поверхности солевых пятен. При использовании ультрафильт-рац ии первоначальная промывка производится ультрафильтратом. [c.186]


    Несмотря на малую химическую стойкость, цинк находит широкое применение, но только в условиях слабых коррозионных нагрузок. Применение цинка и цинковых сплавов основывается на их способности образовывать защитные пленки. Стойкость и коррозию цинка следует рассматривать только с этой точки зрения. Он не пригоден для химического аппаратостроения, но может быть использован для изготовления или защиты деталей, предназначенных для работы в атмосферных условиях или в воде. Цинк применяется как покрытие для защиты железа, как кровельный материал и для изготовления водосточных труб сплавы цинка используются для плакировки арматуры. Детали, отлитые под давлением и предназначенные для работы на открытом воздухе, никелируются и хромируются. Цинковые покрытия в течение многих лет эффективно защищают от атмосферных воздействий строительные конструкции, например мачты и опоры. Лакокрасочные покрытия (не содержащие сурика) увеличивают срок службы изделия, и оцинкование можно рассматривать как эффективную грунтовку, предотвращающую ржавление мета ла под краской и устраняющую необходимость в дорогостоящих работах по снятию ржавчины. при последующей окраске. [c.205]


Смотреть страницы где упоминается термин Лакокрасочные материалы коррозионная стойкость, ut: [c.63]    [c.69]    [c.60]    [c.415]   
Коррозионная стойкость материалов (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионная стойкость

Материалы стойкости



© 2025 chem21.info Реклама на сайте