Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная стойкость лакокрасочных покрытий

    Хорошая адгезия, твердо сть, высокая стойкость в различных коррозионных средних лакокрасочных покрытий на основе эпоксидных смол обусловили их широкое лрименение в антикоррозионной технике. Большой интерес -представляла разработка эпоксидной краски для защиты металлических конструкций в агрессивных условиях Каспийского моря. [c.313]


    Хроматирование. Наряду с электрохимическим оксидированием для алюминиевых, медных сплавов и цинкового покрытия, для листовой стали и жести широко применяют химическое оксидирование с добавкой соединений хрома (хроматирование) или фосфора (фосфатирование). Эти слои применяют самостоятельно или, чаще, как подслой под лакокрасочные покрытия для повышения коррозионной стойкости и адгезии. [c.111]

    Существующие в настоящее время лакокрасочные покрытия не могут в полной мере изолировать металл от внешней среды. Коррозионно-активные вещества, проникая через защитные пленки, способствуют протеканию электрохимических реакций на металле. При этом скорость протекания реакций зависит как от природы пленкообразующего, на основе которого создано покрытие, так и от стойкости защищаемого металла. [c.103]

    Под термином термостойкость лакокрасочных покрытий подразумевают температуру, при которой покрытие сохраняет свои защитные и физико-механические свойства в течение определенного времени. Она обусловливается химической природой и строением полимеров, используемых в качестве пленкообразующих веществ, наличием пигментов и наполнителей, существенно влияющих на свойства покрытий, а также технологией нанесения и режимом сушки покрытий, качеством подготовки поверхности перед нанесением лакокрасочных покрытий и другими факторами. При высоких рабочих температурах у металлов и неметаллических материалов, как правило снижается прочность, а у металлов снижается и коррозионная стойкость. Термостойкие покрытия должны быть стойкими к действию высоких температур и сохранять декоративные качества, должны защищать металл от коррозии, в ряде случаев выдерживать вибрационные нагрузки и удовлетворять другим требованиям. [c.185]

    В последнее время анодные покрытия стали меньше применяться в качестве основы для масляных красок. Это объясняется развитием плакированных сплавов, а также улучшением химических способов обработки и систем масляных покрытий. Известно, что стоимость химической обработки иногда составляет только часть стоимости анодирования, и адгезия краски, а также коррозионная стойкость этих покрытий удовлетворяют большинство областей применения. Как было указано выше, коррозионная стойкость при солевом опрыскивании алюминиевых деталей, окрашенных масляной краской, зависит в большей степени от качества и способа нанесения лакокрасочных покрытий, чем от предварительной обработки, Следует подчеркнуть, что когда изделие подвергается меха- [c.140]


    Доброкачественная фосфатная пленка в 8—10 раз увеличивает коррозионную стойкость лакокрасочных покрытий, нанесенных на фосфатный грунт, что является прямым следствием улучшения их адгезии. [c.194]

    Коррозионная агрессивность среды оказывает решающее влияние на стойкость лакокрасочного покрытия, и она усиливается в связи с загрязнением окружающей нас природы (воздуха и вод) производственными отходами и продуктами сжигания органического топлива. Коррозионная агрессивность различных сред была обсуждена в гл. III. [c.151]

    Электрофоретическое нанесение лакокрасочных материалов, растворимых в воде, представляет собой усовершенствованный способ погружения, недостатки которого устранены действием электростатического поля. Электрофорез основан на ориентированном перемещении коллоидных частиц в диэлектрической среде. При наложении электрического тока возникают два процесса. Первый — это электролиз, характеризующийся перемещением ионов, образовавшихся при диссоциации электролита. Второй — собственно электрофорез, т. е. движение коллоидных частиц под действием электрического поля в среде с высокой диэлектрической постоянной. Частицы в соответствии со своей полярностью движутся к одному из электродов. Отрицательно заряженные частицы движутся к аноду, т. е. к изделию. На аноде или в непосредственной близости от него происходит потеря электрического заряда и коагуляция частиц. Одновременно с электрофорезом происходит и электроосмос, т. е. процесс, при котором под действием разности потенциалов из лакокрасочного материала вытесняется диспергирующий агент, например вода, и слой загустевает. Технологическим достоинством этого способа является возможность обеспечения высокой степени автоматизации, при которой потери лакокрасочного материала не превышают 5%. Достигается равномерная толщина слоя, которую можно регулировать в пределах 8—45 мкм. Слой не имеет пор и видимых дефектов. Коррозионная стойкость его примерно в 2 раза выше, чем у лакокрасочных покрытий, полученных способом погружения. Линия, в которой использована такая технология, -в основном состоит из оборудования для предварительной подготовки поверхности, оборудования для непосредственно электрофоретического нанесения, включая соответствующую промывку, и оборудования для предварительной и окончательной сушки лакокрасочного покрытия при температуре 150—220° С в течение 5—30 мин. Способ нашел применение в автомобильной промышленности, на предприятиях по производству мебели, металлических конструкций для строительства и в других областях. [c.87]

    Высокая коррозионная стойкость анодных покрытий с лакокрасочными объясняется пористостью и высокой поглотительной способностью анодных покрытий их химической и электрической инертностью повышенной стойкостью в отношении истирания. [c.140]

    Надежность и долговечность антикоррозионного лакокрасочного покрытия определяются способностью материала, из которого оно изготовлено, длительно сохранять свои свойства в условиях эксплуатации защищаемого сооружения, правильным выбором системы покрытия и точным соблюдением технологии его нанесения. Покрытие должно выполняться из водоустойчивого материала, обладающего высокими адгезионными и диэлектрическими свойствами, эластичностью, устойчивостью к истиранию и динамическим воздействиям, коррозионной стойкостью, химической инертностью по отношению к металлу трубы и биостойкостью [16—18]. [c.21]

    Чтобы преодолеть все отмеченные недостатки пер-хлорвиниловых лакокрасочных материалов, сохранив их несомненнее достоинство — высокую коррозионную стойкость покрытий, в настоящее время проводятся исследования по модифицированию этих материалов. [c.34]

    Примечание. Грунтовое лакокрасочное покрытие мест или ребер, предназначенных под сварку при толщине до 25 мкм возможна газовая сварка, дуговая электросварка и точечная сварка электрическим сопротивлением применяется также для изделий, которые должны обладать высокой коррозионной стойкостью сушка в течение 15—60 мин, следующее лакокрасочное покрытие наносят через 24 ч поверхность стали должна быть подвергнута дробеструйной очистке до степени о1 согласно изображению ol или Dol в приложении к ЧСН 03 8221 толщина покрытия не должна превышать 25 мкм для кроющего слоя можно применять все виды лакокрасочных материалов защитное действие сохраняется в течение шести месяцев. [c.124]

    ВЛИЯНИЕ ГАЛЬВАНИЧЕСКИХ И ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ НА КОРРОЗИОННО-МЕХАНИЧЕСКУЮ СТОЙКОСТЬ СТАЛЕЙ [c.117]

    Коррозия металлов в других типах вод в основном подчиняется закономерностям, рассмотренным для морской воды с учетом особенностей, связанных с ионным составом, температурой и биологическим фактором конкретной водной среды. В пресной воде с малым содержанием растворимых солей скорость коррозии всех материалов уменьшается. Отсутствие в воде ионов хлора позволяет успешно применять хромистые и хромоникелевые стали, алюминиевые сплавы без опасности возникновения язвенной коррозии. Отличительной особенностью пресной воды является ее меньшая электропроводность, что приводит к уменьшению опасности контактной и щелевой коррозии. Отсутствие в воде галоидных ионов повышает характеристики коррозионно-механической прочности, стойкость защитных лакокрасочных покрытий. [c.30]


    Рассмотренные стали обладают примерно одинаковой коррозионной стойкостью в атмосфере и водных средах. Коррозионная стойкость снижается при наличии в составе стали неметаллических включений в виде оксидов, сульфидов, а также при наличии на поверхности прокатной окалины. Во всех случаях применения требуется защита от коррозии окраска, эмалирование, ингибиторы, металлические защитные покрытия. Наиболее эффективным способом защиты в атмосферных условиях для ответственных конструкций является горячее алюминирование или металлизация с последующей покраской. В растворах электролитов и в природных водах эффективна комплексная защита лакокрасочными покрытиями в сочетании с катодной защитой. [c.67]

    Методами химической и электрохимической обработки можно создать на поверхности фосфатные или оксидные покрытия, которые обладают высокой адсорбционной способностью, электроизоляционными свойствами, повышенной твердостью и износостойкостью. При дополнительной обработке пассивирующими растворами, смазочными или лакокрасочными материалами значительно повышается коррозионная стойкость металлов и сплавов. [c.262]

    Оценка атмосферостойкости и коррозионной стойкости пигментов производится, как правило, в комплексе с оценкой этих свойств лакокрасочных покрытий в целом Так, атмосферостойкость покрытий испытывается либо в естественных условиях на специальных станциях, либо ускоренными лабораторными методами, имитирующими в той или иной мере натурные климатические условия При оценке атмосферостойкости покрытия учитывается и состояние пигмента (цвет) после испытаний [c.262]

    К этой группе наполнителей относятся карбонат кальция — кальцит, мел природный и осажденный, карбонат кальция и магния — доломит, карбонат магния — магнезит, карбонат бария — витерит Все карбонаты проявляют химическую активность к карбоксилсодержащим пленкообразующим веществам. Это приводит к повышению защитных свойств лакокрасочных покрытий, тек повышению водостойкости, коррозионной стойкости, твердости и т п Однако химическая активность карбонатов приводит к уменьшению стабильности красок и эмалей при хранении, повышению их вязкости и загустеванию. Среди карбонатов наиболее широкое применение находит карбонат кальция [c.339]

    Основными факторами, характеризующими лакокрасочные покрытия, являются толщина, пористость, сцепление с основой, твердость, эластичность, сопротивление удару и истиранию, а также стойкость в определенных коррозионных средах. [c.236]

    Коррозионную стойкость металла под лакокрасочным покрытием исследовали путем погружения в 3%-ный раствор хлористого натрия в течение 7 часов с последующей выдержкой на воздухе, в течение 17 часов (один цикл). [c.43]

    Критерием коррозионной стойкости металла при атмосферных испытаниях наиболее часто служит изменение внешнего вида образцов, изменение их веса и механических характеристик. При оценке коррозионной стойкости металла или покрытия по изменению внешнего вида сравнение ведут по отношению к исходному состоянию поверхности, поэтому состояние последней перед испытанием должно быть тщательно зафиксировано. Для этого образцы осматривают невооруженным глазом, а некоторые участки — через бинокулярную лупу. При этом особое внимание обращают [320] на дефекты а) на основном металле (раковины, глубокие царапины, вмятины, окалина, ее состояние и пр.) б) на гальваническом или лакокрасочном покрытии (шероховатость, питтинг, трещины, вздутия, непокрытые. места, пятна от пальцев, царапины). Результаты наблюдений записывают или фотографируют. Для облегчения наблюдений и точного фиксирования их результатов на осматриваемый образец накладывают проволочную сетку или прозрачную бумагу с нанесенной тушью сеткой. Результаты осмотра записывают в специальную карту предварительного осмотра, имеющую такую же сетку [319]. Первоначально за образцами наблюдают ежедневно для установления первых очагов коррозии. В дальнейшем осмотр повторяют через 1, 2, 3, 6, 9, 12, 24 и 36 мес. с момента начала испытаний. При наблюдении на образец можно накладывать масштабную сетку и наблюдаемые изменения фиксировать на карте осмотра [1]. При наблюдении обращают внимание на следующие изменения 1) потускнение металла или покрытия и изменение цвета 2) образование продуктов коррозии металла или покрытия, цвет продуктов коррозии, их распределение на поверхности, прочность сцепления с металлом 3) характер и размеры очагов коррозии основного, защищаемого металла. Для однообразия в описании производимых наблюдений рекомендуется употреблять одинаковые термины потускнение, пленка и ржавчина. Термин потускнение применяют, когда слой продуктов очень тонкий, когда происходит только легкое изменение цвета поверхности образца, термин пленка употребляется для характеристики более толстых слоев продуктов коррозии и термин ржавчина — для толстых, легко заметных слоев продуктов коррозии. Характер слоев продуктов коррозии предлагается описывать терминами очень гладкие, гладкие, средние, грубые, очень грубые, плотные и рыхлые. При описании характера продуктов [c.206]

    Синтетические каучуки широко применяются для защиты от коррозии [1555—1564]. Гилберт [1555] сравнил свойства покрытий лакокрасочными материалами на основе полихлоропрена, сополимеров стирола и бутадиена и др. Составлена таблица с 10-балльной оценкой стойкости покрытий к действию атмосферы, света, тепла, химических реагентов, окислителей и др. Наи-высшей суммой баллов по всем видам коррозионных воздействий обладают покрытия на основе полихлоропрена, поливинилхлорида и эпоксидных смол. Среднее положение занимают покрытия из хлоркаучука и сополимеров бутадиена и стирола. [c.525]

    Коррозионная стойкость деталей в анализируемых условиях может быть значительно повышена применением металлических, полимерных и лакокрасочных покрытий. [c.564]

    Наиболее высокие защитные свойства многие лакокрасочные покрытия проявляют при комплексном их использовании. Например, высокую коррозионную стойкость показали покрытия на основе эпоксидных смол, нанесенные по цинкнаполненной протекторной эпоксидной грунтовке. Эффективно применение присадок в неводных жидкостях, способных образовывать на поверхности металла защитные ингибированные пленки барьерного типа. В качестве таких присадок для топлив и масел рекомендовано большое число органических соединений, включающих аммны, аминоспирты, их соединения с сульфокислотами, жирными кислотами, эфирами, альдегидами, кетонами [5, 6]. В качестве ингибиторов коррозии в различных водонефтяных средах в нашей стране и за рубежом большое распространение нашли алифатические амины и диамины и их производные (например, отечественные марки И КБ-4, АНП-2 и др.) имидазолины и их [c.355]

    Титан обладает отличной стойкостью к струевой и кавитационной коррозии в морской воде. Высокую стойкость к эрозионной коррозии показали сплавы Т1 - 6А1 У и 11-7А1-2НЬ-1Та. Титан обладает высокой стойкостью к питтинговой, щелевой и межкристаллитной коррозии. Он не корродирует под слоем отложений и лакокрасочных покрытий. В последние годы проводятся обширные исследования коррозионного растрескивания титановых сплавов в морской воде, причем особое внимание уделяется сплавам Т1-6А1 У Т1-6А1-6У-28п Т1-ЗСи Т1 -7А1--2№-1 Та и Б-8Мо-8У-2Ре-3 А1. [c.26]

    В ряде сред, в частности в морской атмосфере, коррозионная стойкость цинка н его сплавов недостаточна Лакокрасочные покрытия значите ть-но повышают коррозионную стойкость цинка пли оцинкованных педе-лкй Однако адгезия лакокрасочных покрытий к цинку н цинковым покрытиям иизка. Применение фосфатнровйния в зтом случае повышает Едгсзйю лакокрасочных покрытий и обеспсчисает защиту от коррозии работающих в этих условиях изделий. [c.261]

    Во втором издании (1-е изд. вышло в 1980 г.) рассмотрены способы утилизации растворителей, вопросы коррозионной стойкости металлов в среде растворителей, уделено внимание проблемам экономики. Приведены основные сведения о выпускаемых промышленностью индивидуальных и смесевых растворителях. Даны рекомей-дации по выбору растворителей для лакокрасочных материалов в зависимости от их типов, технологии нанесения и иазиачения покрытий. Предназначено для иижеиерно технических работников лакокрасочной промышленности. [c.4]

    В некоторых случаях водорастворимые примеси в пигменте могут оказывать положительное влияние иа защитные свойства лакокрасочного покрытия и иа свойства самого пигмента Например, в присутствии в качестве примесей солей хромовой кислоты повышается коррозионная стойкость покрытия благодаря наличию ноиа СгО< -, оказывающего пассивирующее воз- [c.233]

    Хроматирование обычно применяют для повышения коррозионной стойкости незащищенных металлических поверхностей и в качестве основы при нанесении лакокрасочных покрытий на алюминий, цинк, оцин- [c.211]

    Качество лакокрасочных покрытий, их декоративный вид и обеспечение коррозионной стойкости эащищаеиых кеталличеоких изделий зависят от многих факторов одним из которых является подготовка поверхности под окраску. [c.41]

    Учитывая, что коррозионная стойкость стали резко возрастает при введении в сплав уже незначительных количеств легирующих элементов, применение низколегированных сталей в качестве строительных и конструкционных материалов, эксплуатируемых в атмосферных условиях, является экономически весьма выгодным долговечность сооружения может быть при этом псвышена по крайней мере в 2—3 раза. При этом необходимо иметь в виду, что низколегированные стали ведут себя лучше, чем малоуглеродистые, и в условиях, когда на их поверхности нанесены лакокрасочные покрытия. [c.275]

    Лит. Белянкин Д. С., Иванов Б. В., Лапин В. В. Петрография технического камня. М., 1952 Заварицкий А. Н. Изверженные горные породы. М., 1961. Г. Л. Кравченко. ДУРАЛЮМИН [от нем. Duren — Дюреи (город, где было начато пром. произ-во сплава) и алюминий] — деформируемый алюминия сплав, осн. легирующими элементами в к-ром являются медь и магний. Впервые разработан (1908) в Германии. В СССР применяют Д. семи марок (табл. 1). Д. отличается низкой плотностью (2,75—2,85 г/см ), высокой прочностью. Из-за низкой коррозионной стойкости изделия из Д. защищают от коррозии плакированием алюминием, оксидированием или нанесением лакокрасочных покрытий. Все Д. упрочняют закалкой (охлаждение — в холодной воде) и последующим старением (см. Старение металлов). Для каждого сплава т-ру нагрева под закалку (485—530° С) поддерживают в жестких пределах (напр., для Д. марки Д16 она составляет 500 i 5° С). После закалки Д. подвергают естественному (не мепее четырех суток) или (реже) искусственному старению, способствующему значительному повышению предела текучести при существенном снижении пластичности (табл. 2). Наибольшее распространение полу- [c.408]

    ФОСФАТЙРОВАНИЕ - создание на поверхности металлических изделий пленки из нерастворимых фосфатов. Осн. назначение Ф., к-рое сочетают, поскольку пленка пориста, с нанесением лакокрасочных или масляных покрытий,— повышение коррозионной стойкости изделий. Фосфатные покрытия термостойки до т-ры 400—500° С и выдерживают напряжение 300—500 в. Ф. осуществляют воздействием на обрабатываемые изделия (преим. стальные или чугунные малолегированные) раствора кислых солей — фосфорнокислого железа и марганца (иногда цинка) — МАН ЕФ (марганец, железо, фосфор) примерного состава 18—20% Мп 0,14-0,15% Ре2+ 2,0-2,5% Ге + 60-70% РО 1% 804 1-2% НзО  [c.660]

    Нельзя использовать для нанесения на цинковые и алюми ниевые покрытия масляные и пигментированные свинцовым су риком материалы. Более пригодны для этой цели эпоксидные поливиниловые и некоторые другие лакокрасочные материалы которые хорошо заш ищают металлические покрытия и увеличи вают срок их службы. В последнее время используются металли зационные покрытия сплавом Zn—А1. Хорошие результаты до стигаются при соотношении 70% 2п—30% А1. Такие покрытия характеризуются повышенной коррозионной стойкостью по сравнению с покрытиями из чистого алюминия или цинка. [c.204]


Смотреть страницы где упоминается термин Коррозионная стойкость лакокрасочных покрытий: [c.30]    [c.151]    [c.151]    [c.261]    [c.305]    [c.64]    [c.14]    [c.64]    [c.191]    [c.33]    [c.69]    [c.636]    [c.727]    [c.660]    [c.727]   
Технологические трубопроводы нефтеперерабатывающих и нефтехимических заводов (1972) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионная стойкость



© 2025 chem21.info Реклама на сайте