Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционные силы

    Адсорбционные явления, начиная с физико-механической адсорбции на поверхности раздела фаз и кончая капиллярной конденсацией, представляют сложную совокупность физических, химических и физико-химических процессов. В настоящее время нет единой теории, объединяющей все частные случаи сорбции на общей основе. Теория сорбции подразделяется на молекулярную, сорбцию Ленгмюра, основанную на валентной природе адсорбционных сил электрическую теорию адсорбции полярных молекул (теорию зеркальных сил, квантовомеханический учет дисперсионной составляющей адсорбционных сил) капиллярную конденсацию полимолекулярную адсорбцию Брунауера — Эммета — Теллера, теорию Юра — Гаркинса [25, 44, 69]. [c.66]


    Промежуточное положение между процессами хемосорбции и разделением с помощью чисто адсорбционных сил занимают методы, основанные на образовании некоторыми веществами непрочных соединений (комплексов, аддуктов), которые характеризуются строго определенной кристаллической структурой. Наиболее характерный пример таких методов — выделение парафиновых углеводородов нормального строения с числом атомов углерода выше 6—7, а также их некоторых производных путем образования аддуктов с карбамидом (мочевиной) O(NH2)2. [c.314]

    В условиях граничной смазки основные характеристики трения и износа определяются состоянием тонкой, адсорбированной на поверхностях трения масляной пленки. Устойчивость тонких граничных слоев при трении зависит от свойства масла, называемого маслянистостью, природа которого еще не достаточно выяснена. Эти тончайшие слои смазки очень прочно связаны с металлическими поверхностями адсорбционными силами. [c.131]

    Явления адсорбции в процессе комплексообразования. При приближении к поверхности кристалла карбамида молекулы н-алкана она адсорбируется на этой поверхности при этом кристалл-карбамида получает достаточно энергии для перехода из тетрагональной форумы в гексагональную. Калориметрическим методом была определена [16] теплота адсорбции н-октана арбамидом с размерами частиц 0,1-0,15 мм. Авторы этой работы установили, что теплота адсорбции н-алкана на твердой поверхности карбамида несколько больше вычисленной теплоты образования комплекса, составляющей 6,7 кДж на одну метильную группу. Поэтому они считают, что н-алканы удерживаются в решетке адсорбционными силами. В работе [8]явление адсорбции отрицается. [c.46]

    Адсорбция. Природа адсорбционных сил [c.38]

    При сужении пор адсорбционные силы сближающихся стенок пор складываются, причем потенциал дисперсионных сил всегда увеличивается. Это приводит к увеличению энергии адсорбции, в особенности для молекул с большой поляризуемостью, например больших по размерам молекул углеводородов и их производных. Энергия адсорбции паров гексана и бензола на силикагеле заметно увеличивается при сужении его пор до 50—40 Л- При адсорбции малых по размерам молекул, таких, как молекулы азота и метанола, энергия адсорбции заметно изменяется лишь при сужении пор до размеров, меньших 30 А. В случае адсорбции воды на силикагеле сужение пор до 25 А на энергии адсорбции практически еще не сказывается. [c.517]

    Природа сил, вызывающих адсорбцию, может быть различной. При адсорбции происходит концентрация молекул поглощаемого вещества па поверхности адсорб( нта под действием ван-дер-ваальсо-вых сил. Этот процесс часто сопровождается конденсацией паров поглощаемого вещества в капиллярных порах адсорбента, присоединением молекул поглощаемого вещества по месту ненасыщенных валентностей элементов, составляют,их кристаллическую решетку адсорбента, и другими процессами. Независимо от природы адсорбционных сил на величину адсо])бции влияют следующие факторы природа поглощаемого вещества, температура, давление и примеси в фазе, из которой поглощается вещество. [c.384]


    Равновесие вещества в газовой фазе и в адсорбционном слое на поверхности адсорбента подобно равновесию газа в поле тяжести, только роль гравитационного поля играет поле адсорбционных сил, очень быстро убывающих с расстоянием от поверхности адсорбента. При адсорбции газов образуется мономолекуляр-ный адсорбционный слой толщина слоя определяется размерами молекул адсорбата и их ориентацией у поверхности. [c.439]

    Помимо воды, входящей в состав оксидов, на поверхности металла может присутствовать вода, связанная с ним электронодонорно-акцепторным (ЭДА) взаимодействием, водородной связью или ван-дер-ваальсовыми адсорбционными силами [303]. Тип связи воды с поверхностными атомами металла зависит от природы и металла, и электролита. Так, в кислой или нейтральной среде поверхность железа несет на себе положительный заряд, и можно ожидать электронодонорного взаимодействия воды с этой поверхностью. В щелочной среде или при недостатке НзО+-ионов вблизи электродов предпочтительна ориентация воды в двойном слое атомами водорода к поверхности металла. Следовательно, энергия связи воды с поверхностью металла может изменяться в широком интервале — от химической связи до слабой водородной или ван-дер-ваальсовой. [c.292]

    Брунауэр, Эммет и Теллер пытались создать единую теорию физической адсорбции. Они рассматривают процесс адсорбции как образование на адсорбенте молекулярных слоев, которые составляют общую толщину адсорбционной пленки, и указывают, что нри любом равновесии на адсорбенте имеются различные толщины пленки. Таким образом, к действию адсорбционных сил, исходящих от поверхности адсорбента, присоединяются силы взаимного притяжения Ваи-дер-Ваальса между молекулами адсорбированного вещества. На основании этого предположения выводится уравнение изотермы  [c.401]

    Это выражение показывает, что константа Генри для адсорбции определяется в основном потенциальной энергией адсорбционных сил. [c.510]

    Из приведенных выше данных следует, что уже 3—4-кратного промывания должно быть достаточно для удаления примесей из осадка. Одиако в действительности приходится промывать больше, так как примеси удерживаются в осадке адсорбционными силами. [c.147]

    В общем случае пептизация происходит под влиянием адсорбции дисперсионной среды или пептизаторов. Адсорбционные силы преодолевают более слабые силы сцепления между частицами, причем образующиеся адсорбционно-сольватные слои препятствуют коагуляции частицы. В результате пептизации гель может перейти в золь. [c.524]

    ЭНЕРГИЯ АДСОРБЦИОННЫХ СИЛ Я МОЛЕКУЛЯРНО-СТАТИСТИЧЕСКИЙ РАСЧЕТ АДСОРБЦИОННЫХ РАВНОВЕСИЙ [c.487]

    Для поверхностной сорбции (адсорбции) в порах переходного типа можно ограничиться выводами потенциальной теории, согласно которой адсорбированное вещество представляет конденсированную жидкую фазу, обладающую свойствами объемной жидкой фазы. Поверхность адсорбированной пленки соответствует одному значению адсорбционного потенциала Ч , численно равного работе адсорбционных сил по перемещению единицы количества вещества из газовой объемной фазы с давлением Р к поверхности адсорбированной пленки, давление над которой принимается равным давлению насыщенного пара Ру при температуре Т. Таким образом, действие сил поля с потенциалом эквивалентно дополнительному давлению, приложенному к адсорбированной пленке АР = Ру Т)—Р. [c.47]

    При последующем осаждении осадок выделяется в чистом виде, а постороннее, загрязняющее вещество медленно осаждается после того, как осадок уже сформирован, т. е. осадок загрязняется малорастворимым веществом. Например, если осаждать Са - оксалатом аммония в присутствии Mg +, то выделяется осадок СаС204-Нг0, а оксалат магния остается в растворе. Но при выдерживании осадка оксалата кальция под маточным раствором через некоторое время он загрязняется малорастворимым оксалатом магния, который медленно выделяется из раствора. Это происходит потому, что вблизи поверхности осадка за счет адсорбционных сил повышается концентрация С2О4 и превышается ПР оксалата магния. Загрязнения осадков за счет совместного осаждения малорастворимых соединений и последующего осаждения их можно избежать, прибегая к определенным приемам работы. Поэтому в дальнейшем будут рассмотрены лишь случаи загрязнения осадков в результате соосаждения. [c.108]

    Вь1сокомолекулярные нормальные алкань 1 в обычных условиях, начиная с гексадекана представляют собой твердые вещества кристаллической структуры с температурой плавления 16-95 °С. При низких те шерат> рах алканы в виде кристаллов сцепляются друг с другом и образуют надмолекулярную структуру под действием дисперсионных сил, возникающих при взаимном обмене электронами между молекулами. В результате действия адсорбционных сил, часть жидкой фазы среды ориентируется вокруг ассоциированных кристаллов и образует сольватные оболочки различной толщины, В ячейках между сцепленными кристаллами включается часть дисперсионной среды (масел) и образованная система приобретает структурную прочность. [c.22]


    Разделение жидких и газообразных смесей с помощью синтетических цеолитов основано на особенностях кристаллического строения последних, т. е. на строго определенном, моноднсперсном размере наружных пор макрокристаллов в сочетании с наличием довольно значительных внутренних полостей, соединенных каналами с входными порами. При этом размеры пор цеолита соизме-шмы с размером молекул большинства органических веществ (10 —10" мкм). Лри соприкосновении смеси веществ с макрокристаллом цеолита молекулы с размером, меньшим диаметра пор, проходят внутрь полостей и задерживаются там за счет адсорбционных сил, в то время как молекулы больших размеров отсеиваются (в связи с этим цеолиты и некоторые другие аналогичные адсорбенты получили название молекулярных сит). Подавая затем к поверхности цеолита вместо исходной смеси соответствующий десорбент (элюент), также проходящий через поры цеолита и способный вытеснить ранее адсорбированные молекулы, можно с любой необходимой четкостью разделить исходную смесь. Поскольку цеолиты являются довольно дорогим сорбентом, применение их на практике рентабельно лишь при нахождении условий, обеспечивающих длительный срок работы (порядка года). [c.307]

    Адсорбционные силы иоверхности распространяются только па монослой. [c.48]

    Адсорбционная конденсация влаги обусловлена проявлением адсорбционных сил на поверхности металла и способна создавать слои влаги толщиной до нескольких десятков молекулярных слоев (рис. 266). Кроме того, согласно уравнению (708), потенциал мениска равен т. е. обратно пропорционален радиусу кривизны [c.375]

    Десорбцию при температурах 200—400 °С осуществляют для выделения поглощенных веществ из цеолитов (синтетических и природных), обладающих строго упорядоченной структурой пор и значительными адсорбционными силами. В качестве десорбирующего агента в этом случае используют нагретые воздух илк инертный газ (чаще всего N2). [c.84]

    Ориентационное и индукционное взаимодействия представляют собой электростатическую компоненту адсорбционных сил. Ориентационное взаимодействие играет основную роль для нейтральных молекул. В простейшем случае при достаточно больших температурах и значительном разрежении [c.39]

    Величина а в первом приближении определяется отношением квадратов длин свободного пробега молекул в сорбированном слое и объемной газовой фазе и по существу представляет собой коэффициент стесненной поверхностной диффузии в без змерной форме, когда единицой измерения служит величина Константа р корректирует длину свободного пробега молекулы в газовой фазе при наличии потенциала адсорбционных сил [c.61]

    Изучение свойств адсорбирующихся на различных границах раздела компонентов нефти показало, что при равных гидродинамических условиях вытеснения нефти из пористой среды присутствие в первую очередь порфиринов и затем асфальтенов является фактором, обусловливающим низкие коэффициенты извлечения нефти из пласта. Изменение гидродинамических режимов в реальных условиях, безусловно, может дать увеличение нефтеотдачи за счет включения ранее не охваченных вытеснением участков пласта, однако и в этом случае за фронтом вытеснения останется значительное количество нефти, удержанной адсорбционными силами на твердой поверхности. [c.191]

    Соотношение между высотой слоя катионита и анионита зависит от состава очищаемой воды, адсорбционных сил ионообменного слоя и кинетических особенностей процесса. [c.343]

    На рис. Х1-2 приведена схема расположения эквипотенциальных поверхностей. Буквами и7 , 2, и з,. .. обозначены объемы адсорбированных слоев, ограниченные эквипотенциальными поверхностями и поверхностью адсорбента [0-1]. Объем всего адсорбшюнного пространства маис ограничен поверхностью адсорбента и поверхностью, отделяющей адсорбированный слой от пространства, где адсорбционные силы уже ие действуют. На последней эквипотенциальной поверхности (соответствующей ]Х макс) адсорбционный потенциал равен нулю. [c.718]

    В зависимости от размера пор, все пористые среды принято делить на три класса микро- и макропористые тела и структуры с переходными порами. Предельный радиус мнкропор не превышает 15 Л, т. е. молекулярных размеров, поэтому практически все пространство микропор находится в поле действия поверхностных сил. Адсорбционный потенциал в микропористых телах заметно выше, чем в других пористых системах. Характерный размер макропор условно принимают более 2000 А удельная поверхность тел с подобной структурой сравнительно невелика, так что влияние адсорбционных сил на процессы, протекающие в этих средах, незначительно. Более того, при стандартных условиях ( =25°С, Р = 760 мм рт. ст.) для большинства газов в каналах макропористых тел обычно реализуется континуальное течение, исключающее процесс разделения смеси. Поэтому макропористые тела используют в мембранной технологии в качестве дренажной системы (пористой подложки). [c.39]

    При адсорбции молекулы газа или пара концентрируются на поверхности адсорбента под влиянием молекулярных сил притяжения. Этот процесс часто сопровождается химическим взаимодействием, а также конденсацией пара в капиллярных порах твердого адсорбента. Общепризнанной теории адсорбции еще нет. Согласно широко распространенному взгляду, адсорбция происходит под действием электрических сил, обусловленных взаимодействием зарядов молекул адсорбента и по1лощае-мого вещества. По другой теории адсорбционные силы носят химический характер и природа их объясняется наличием свободных валентностей на поверхности адсорбента. [c.713]

    На рис. 30 схематически показано распределение влаги в твердом топливе. Свободная вода, которая не зависит от действия адсорбционных сил, заполняет большие трещины в углях.. Адсорбционная вода, находящаяся непосредственно у поверхности твердой фазы, связана с ней адсорбционными силами. Кроме того, она заполняет узкие капилляры и тсСнкие поры в углях [5, с. 126]. [c.92]

    ПреДстайляют собой двухфазную колЛоиДнуЮ систему, состоящую из дисперсной фазы и дисперсионной среды, которые принципиально различаются по химической природе и структуре. Центральная часть мицеллы представляет собой гуминовое ядро, на поверхности которого расположены битумы (до 20% ядра), связанные с ним адсорбционными силами. Битумы, которые находятся в меж-мицеллярном пространстве, образуют непрерывную фазу, т. е. они являются дисперсионной средой, а гуминовые ядра играют роль дисперсной фазы. По данным Агде и Губертуса, неполярный бензол не может полностью разорвать связь между битумами и гуминовым ядром и поэтому выход битумов А сравнительно небольшой. Полярный пиридин разрывает эту связь и полностью извлекает битумы. Большой выход экстрактов при повышенных температурах (битумы В) объясняется образованием истинных и коллоидных растворов из-за пептизации гуминовых ядер. [c.213]


Смотреть страницы где упоминается термин Адсорбционные силы: [c.17]    [c.448]    [c.489]    [c.490]    [c.492]    [c.494]    [c.498]    [c.500]    [c.502]    [c.504]    [c.511]    [c.512]    [c.519]    [c.519]    [c.375]    [c.182]    [c.82]    [c.600]    [c.204]   
Смотреть главы в:

Курс коллоидной химии 1974 -> Адсорбционные силы


Курс коллоидной химии 1974 (1974) -- [ c.124 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.41 ]

Экстрагирование из твердых материалов (1983) -- [ c.104 , c.105 ]

Краткий курс коллойдной химии (1958) -- [ c.82 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционное взаимодействие, тип дисперсионные силы

Адсорбционное взаимодействие, тип индукционные силы

Адсорбционное взаимодействие, тип электростатические силы

Адсорбционные силы и избирательность адсорбции органических молекул из водного раствора

Адсорбционные силы у поверхности твердого тела

Адсорбция и адсорбционные силы

Силы взаимодействия адсорбционных слоев

Электрические свойства молекул и их связь с молекулярными и адсорбционными силами. Электростатическая компонента адсорбционной энергии



© 2025 chem21.info Реклама на сайте