Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиофобные системы

    Этот эффект, обнаруженный ранее нами на модельных топливных системах, связан с тем, что в НДС со вторичными асфальтенами определяющим является кинетический фактор устойчивости, за счет которого менее дисперсные лиофобные системы могут удерживать в растворе достаточно крупные агрегаты асфальтенов. [c.111]

    В лиофобных системах энергии связи внутри дисперсной фазы значительно больше, чем энергии межфазного взаимодействия. Разность между ними не компенсируется энтропийным фактором, поэтому для них [c.67]


    В лиофобных системах почти полностью отсутствует взаимодействие между молекулами среды и частицами дисперсной фазы. Лиофобные системы, в которых дисперсионной средой является вода, называются гидрофобными системами. Например, многие металлы в коллоидном состо Нии, эмульсии масел в воде и др. [c.282]

    Здесь уместно указать, что наряду с типичными необратимыми и обратимыми системами, согласно классификации Зигмонди и Фрейндлиха, существуют и промежуточные системы, которые трудно отнести к какому-нибудь одному из обоих классов. Это, например, золи гидроокисей некоторых металлов А1(0Н)з, Ре(ОН)з, 5п(ОН)4. Исследование с помощью оптических методов указывает на присутствие в этих системах коллоидных частиц (агрегатов молекул). Имеются и другие основания считать эти системы гетеро-генными. Вместе с тем эти системы обратимы, могут быть получены с достаточно большой концентрацией дисперсной фазы и менее чувствительны к электролитам, чем типичные лиофобные системы. Такие свойства этих систем обычно объясняют исключительно большой гидратацией содержащихся в них частиц. Однако в последнее время ряд исследователей стали считать, что в этих системах в зависимости от способа получения дисперсная фаза может находиться как в виде коллоидных частиц, так и в виде макромолекул. Природа этих растворов до сих пор окончательно не ясна. К этому вопросу мы еще возвратимся в гл. IX и XIV. [c.27]

    Агрегативная устойчивость дисперсных систем в очень сильной степени зависит от состава дисперсионной среды и может быть резко, изменена введением и нее даже очень малых количеств чужеродных электролитов. По влиянию добавок электролитов на устойчивость коллоидные системы можно разделить на два класса лиофобные и лиофильные системы. В лиофобных системах при добавлении электролитов резко увеличивается скорость коагуляции. После перехода через некоторый предел — критическую концентрацию — скорость коагуляции достигает предельного значения, характеризующего так называемую быструю коагуляцию. Лиофильные коллоидные системы коагулируют, если концентрация прибавляемого электролита весьма велика — порядка молей на литр. [c.260]

    Наиболее основательно и успешно изучены, особенно в теоретическом отношении, лиофобные системы, на устойчивости и коагуляции которых мы в первую очередь и остановимся. [c.260]

    Графически уравнение Эйнштейна выражается прямой (рис. 23.12). При превышении некоторой критической величины объемной доли фкр экспериментальные данные расходятся с теоретическими. Уравнение Эйнштейна применимо для золей и разбавленных суспензий, у которых частицы дисперсной фазы не взаимодействуют с дисперсионной средой (лиофобные системы). [c.385]


    Коллоидные растворы классифицируют по способности сухого остатка, полученного при осторожном выпаривании, растворяться в чистой дисперсионной среде. Системы, сухой остаток которых не способен самопроизвольно диспергироваться в дисперсионной среде, называются необратимыми (например, лиозоли металлов, гидрозоли иодида серебра и др.). Обратимыми коллоидными системами называются системы, у которых сухой остаток при соприкосновении со средой обычно сначала набухает, а затем самопроизвольно растворяется и образует прежнюю дисперсию (например, раствор желатины в воде или каучука в бензоле). Обратимость или необратимость коллоидной системы определяется отношением дисперсной фазы к дисперсионной среде. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. По этому признаку дисперсные системы Делят на две основные группы лиофильные (обратимые) системы (истинно лиофильные и поверхност-но-лиофильные) и лиофобные (необратимые) системы. Если же дисперсионной средой системы является вода, эти два класса можно назвать соответственно гидрофильными и гидрофобными системами. Отсюда следует, что лиофобные коллоидные растворы являются типичными коллоидными системами, а лиофильные системы представляют собой не что иное, как растворы высокомолекулярных соединений. Существуют и промежуточные системы, которые трудно отнести к какому-либо одному из названных классов, например, золь 8102 и золи гидроксидов некоторых металлов. Лиофильные системы устойчивы, т. е. стабильны во времени, лиофобные системы неустойчивы и постепенно [c.17]

    В лиофобных системах слипание частиц, вызванное добавлением электролита или повышением концентрации золя, легче всего происходит на выступающих участках поверхности частиц — на углах и ребрах. Такой процесс начинается в отдельных участках, а затем распространяется на весь объем данной системы. В этом случае все твердые частицы дисперсной фазы связываются в один сплошной каркас, обладающий известной прочностью. Промежутки между частицами в ячейках каркаса заполняются дисперсионной средой, часть молекул которой связана с поверхностью частиц силами межмолекулярного взаимодействия, основная же масса жидкости удерживается в ячейках механически. Образовавшаяся система, приближающаяся по своим свойствам к твердому телу, называется гелем. [c.366]

    Ранее коллоидные системы разделяли также по интенсивности молекулярного взаимодействия на границе раздела фаз — на две основные группы а) лиофильные системы и б) лиофобные системы. Названия происходят от греческих слов лио — растворяю, фил—люблю, фоб — имею отвращение. Эти названия характеризуют сильное или слабое взаимодействие между молекулами среды и дисперсной фазы. [c.17]

    К лиофобным системам относили гидрозоли металлов, сульфидов, эмульсии масла в воде и др., у -.собственно коллоиды. К лиофильным системам относили т ие д стемы, как растворы мыл (см. стр. 154 и ел.), танида [c.17]

    Основываясь на указанных особенностях двух систем, раНее разделяли эти системы на лиофобные и лиофильные коллоиды. В главе X будет показано, что найденные закономерности в лиофобных системах оказались непригодными для объяснения процессов растворения высокомолекулярных соединений и свойств их растворов. [c.165]

    В лиофобных системах на частицах дисперсной фазы практически отсутствует сольватная оболочка, а затрата энергии на диспергирование поэтому ничем не компенсируется. В этом случае АН>ТА8 и ДО>0 процесс образования коллоидной системы как самопроизвольный невозможен. Наоборот, будучи созданной, она является термодинамически неустойчивой, так как в, процессе се разрушения коагуляции ) происходит уменьшение свободной энергии. [c.259]

    В лиофобных системах структура коагулятов и их прочность в значительной мере определяется степенью сольватации, которая [c.239]

    В лиофобных системах структура коагулятов и их прочность в значительной мере определяется степенью сольватации, которая может изменяться в весьма широком диапазоне — от типично лиофобных коллоидов (гидрозоли металлов) до систем, сильно лиофилизированных, особенно в результате адсорбции ПАВ или ВМС. В подобных агрегатах, несмотря на изменение подвижности, частицы еще сохраняются как таковые большее или меньшее время (так называемое время жизни ), после чего могут срастаться (в случае твердой дисперсной фазы) или сливаться (в случае жидкой) самопроизвольно с уменьшением поверхности раздела фаз. Слияние капелек называется коалесценцией. [c.231]

    Проведенное в гл. IV термодинамическое рассмотрение позволило выделить два больших класса дисперсных систем термодинамически устойчивые — лиофильные системы и устойчивые лишь кинетически — лиофобные системы. Анализу строения, условий разрушения и устойчивости лиофобных систем посвяш,ены следующие главы книги в данной главе подробно рассмотрены условия образования лиофильных коллоидных систем, их строение и свойства. [c.217]

    По данным, полученным Е. А. Амелиной с сотр. при экспериментальном исследовании взаимодействия индивидуальных частиц в типично лиофобных системах (гидрофильные частицы стекла и кварца в гептане), адсорбционные слои маслорастворимых ПАВ действительно обнаруживают высокую сопротивляемость вытеснению и снижают энергию взаимодействия частиц на несколько порядков величины — до уровня ее значений в полностью устойчивых относительно коагуляции системах. [c.263]


    Если вернуться теперь к оценке прочности коагуляционной структуры, образованной микронными, более или менее плотно упакованными частицами, то (для лиофобной системы при Дж) получаем (1/2/ ) А г/2/го 10 Н/м2. Найденное значение Рс для суспензии или порошка имеет смысл предельного напряжения сдвига т (см. ]). Для более грубодисперсной системы с частицами размером гх 100 мкм оно составит лишь 10 Н/м , эта величина характерна для легкоподвижных систем, например песка в песочных часах. Напротив, для высокодисперсной структуры с частицами глг 100 А эта величина составляет 10 Н/м2 и более, что отвечает уже существенному сопротивлению формованию. [c.317]

    Чем отличаются лиофобные системы от лиофильных  [c.155]

    Фазовое состояние, в котором находятся асфальтены, будет определяться природой нефти, количеством смолисто-асфальтеновых веществ, температурой системы [220]. В высокоароматизированной углеводородной среде, при небольшой концентрации асфальтенов сравнительно невысокой молекулярной массы образуется истинный раствор. Увеличение молекулярной массы и концентрации, снижение температуры и ароматично сти дисперсионной среды приводят к появлению ассоциатов и образуется термодинамически неустойчивая лиофобная система. Образуют ли выделившиеся асфальтены дисперсную фазу и коллоидный раствор или, агрегируясь, образуют самостоятельную псевдофазу [219] будет зависеть от концентрации и растворяющей способности смол, вязкости среды [218]. Смолистые фракции, играя роль поверхностно-активных веществ, образуют в ассоциате сольватный слой, так как они ориентированы к асфальтеновому ассоциату полярными фрагментами, а углеводородными к дисперсионной среде. Они представляют собой барьер, препятствующий укрупнению частиц. Устойчивость таких систем будет определяться толщиной сольватной оболочки. Неустойчивые системы стремятся к разделению фазы. Результатом этого может быть расслоение продукта в процессе хранения и компаундирования, при нагреве в змеевиках и др. [c.94]

    В термодина.мически неустойчивых дисперсных системах, какими являются лиофобные системы, агрегатнвная устойчивость носит к1шетический характер, и судить о ней можно по скорости процес-соа, вызываемых избытком поверхностной энергии. При изотермической перегонке в таких системах скорость массопереноса зави- [c.272]

    Лиофобные дисперсные системы термодиначески неустойчивы, так как частицы дисперсной фазы склонны к агрегации. Их термодинамическая агрегативная неустойчивость обусловлена избытком иоверхностной энергии. Межфазное поверхностное натяжение в лиофобных системах больше рассчитанного по соотношению Ребиндера—Щукина (V. 2). Поэтому они не могут быть получены самопроизвольным дис- [c.159]

    В них присутствуют частицы собственно коллоидной дисперсности (10-3—10- мкм), микрогетерогенные (10- —10 мкм) и грубодисперсные (>10 мкм). Среди буровых жидкостей встречаются как лиофильные, так и лиофобные системы, как связноднсперсные (гели) так и свободнодисперсные (золи). Первые в буровых жидкостях имеют особенно большое значение. [c.4]

    Н. П. Песков (1920) ввел понятие о двух видах устойчивости дисперсных систем седиментационной (кинетической) и агрегативной. Седиментационная устойчивость позволяет системе сохранять равномерное распределение частиц в объеме, т. е. противостоять действию силы тяжести и процессам оседания или всплывания частиц. Основными условиями этой устойчивости являются высокая дисперсность и участие частиц дисперсной фазы в броуновском движении. Агрегативная устойчивость дисперсных систем — это способность противост()ять агрегации частиц. В этом отношении дисперсные системы делят на два класса 1) термодинамически устойчивые, или лиофильные, коллоиды, которые самопроизвольно диспергируются и существуют без дополнительной стабилизации (мицеллярные растворы ПАВ, растворы ВМВ и т. п.). При образовании этих систем свободная энергия Гиббса системы уменьшается (Лй<0) 2) термодинамически неустойчивые, или лиофобные, системы (золи, суспензии, эмульсии). Для них А6 > 0. [c.424]

    Измерение краевых углов для различных твердых тел позволяет их разделить по отношению к смачивающей жидкости (см. гл. XVII) на две группы — лиофиль-ные и лиофобные (греческие лиос — жидкость, филос — любовь, фобус — ужас, отталкивание). Это относится и к дисперсным системам, для которых характерно интенсивное взаимодействие дисперсионной среды с поверхностью дисперсной фазы — лиофильные системы (это взаимодействие обусловливается образованием развитых сольватных слоев). Системы с очень слабо выраженным взаимодействием дисперсной фазы и дисперсионной среды — лиофобные системы, при смачивании водой — соответственно, гидрофильные, хорошо смачиваемые, и гидрофобные, т. е. плохо смачиваемые. При смачивании водой твердые тела в зависимости от их физико-химической природы, в частности горные породы, проявляют как гидрофильные, так и гидрофобные свойства. Например, кварцит, кальцит и т. д.— гидрофильны, а ископаемые угли, сера, пирит и другие сульфиды — гидрофобны. [c.180]

    Сухие остатки некоторых коллоидных растворов (полученные при осторожном выпаривании) способны вновь образовывать золь при добавлении соответствующего растворителя (дисперсионной среды), т. е. эти коллоидные системы обратимы. Сухие остатки коллоидных растворов, не образующих золь при добавлении дисперсионной среды, называются необратимыми коллоидными системами. Поскольку у обратимых систем дисперсная фаза взаимодействует с жидкой дисперсионной средой и может в ней растворяться, т. е. обладает сродством к ней, Фрейндлих и предложил называть их лиофильными системами. К ним относятся растворы высокомолекулярных соединений белки, нуклеиновые кислоты и т. п. У необратимых систем дисперсная фаза не взаимодействует с дисперсионной средой и, следовательно, не растворяется в ней. Их назвали лиофобными системами. К ним относятся типичные коллоидные растворы золи гидроокиси железа, сернокислого бария и т. п. Если дисперсионной средой служит вода, то системы называются соответственно гидрофильными или гидрофобными. Гидрофильность обусловлена присутствием в молекулах достаточно большого числа гидрофильных групп, которыми могут быть или диссоциированные (ионогенные) R—СООН, R—NH3OH, R— OONa, R—NH3 I, или недиссоциированные (полярные) [c.173]

    Типично лиофильные системы термодинамически устойчивы и хар.актеризуются самопроизвольным диспергированием. Оно возможно при условии, что возрастание свободной энергии, связанное с увеличением поверхности при диспергировании, компенсируется уменьшением энтальпии в процессе сольватации и ростом энтропии системы за счет поступательного движения образующихся частиц (см. главу XIII). Так, мыла, многие глины (например, бентонитовая) самопроизвольно распускаются в воде, а высокомолекулярные соединения растворяются в хорошем (т. е. хорошо взаимодействующим с ними) растворителе до отдельных макромолекул. Системы, в которых самопроизвольного диспергирования не происходит, могут быть названы лиофобными системами, но лио-филизированными в той или иной степени. [c.14]

    Рассмотренные нами лиофобные системы значительно различаются по своим свойствам в зависимости от степени их лиофили-зации. Особенно ярко проявляется это различие при изучении их обратимости — способности коагулированных систем к пептиза- [c.262]

    Рассмотренные лиофобные системы значительно различаются по свойствам в зависимости от степени их лиофилизации. Особенно ярко проявляется это различие при изучении их обратимости — способности коагулированных систем к пептизации. Пептизацией или дезагрегацией называется процесс, обратный коагуляции, а именно — переход коагулята в золь. Этот процесс отличается от диспергирования твердой фазы тем, что энергия затрачивается на работу против межмолекулярных, а не химичв ских сил. [c.252]

    По Ребиндеру, структурно-механический барьер возникает при адсорбции молекул ПАВ, которые могут быть не сильно поверхностно-активными для данной границы раздела фаз, но способны к образованию гелеобразного структурированного слоя на межфазной границе (ПАВ третьей и четвертой групп по классификации, приведенной в 3 гл. И). Этот слой подобен трехмерной структуре — гелю, который может возникать в растворах ряда веществ при достаточной их концентрации. К таким веществам относятся глюкозиды, белки, производные целлюлозы (карбоксиметилцеллюлоза) и другие так называемые защитные коллоиды — высокомолекулярные вещества со сложным строением молекул, которые имеют области меньшей и большей гидрофильности в пределах одной молекулы. По отноше-лию к дисперсиям гидрофильных порошков в неполярных жидкостях высокой стабилизирующей способностью обладают многие маслорастворимые ПАВ, способные прочно (химически) адсорбироваться на поверхности гидрофильных частиц. Стабилизированные таким путем лиофобные системы приобретают свойства дисперсий данного стабилизатора, т. е. становятся лиофилизованнымн. По Ребиндеру, следующие условия определяют высокую эффективность структурно-механического барьера. [c.261]

    Такой близкой родственности слоя стабилизатора и дисперсионной среды отвечают малые значения А. Действительно, образование па поверхности частиц сильно сольватированного (пропитанного средой) слоя стабилизатора, состоящего преимущественно из молекул растворителя (например, слоя желатины на поверхности частиц эмульсин масло — вода), приводит к тому, что объемы, которые вносят основной вклад в энергию притяжения частиц, т. е. объемы, непосредственно примыкающие к зоне контакта, включают главным образом этот сольватированный слой (рис. IX—10). Если константа Гамакера сольватированного слоя стабилизатора Аз близка к значению константы Гамакера среды Аг, то величина сложной константы Гамакера А%з === (1 А, — Т А,) может быть на 1—2 порядка и более гшже величины А 12, характерной для системы частица — среда в отсутствие стабилизатора. Для большинства обычных лиофобных систем с водной или углеводородной дисперсионной средой значения А, составляют (1/А, — А,) Ю ч-несколько-10 2° Дж (А1 — константа Гамакера дисперсной фазы). В соответствии с соотношениями (IX—21а), (IX—22) н численными оценками, которые были приведены на с. 253, снижения сложной константы Гамакера на два порядка достаточно при этом для обеспечения высокой степени лиофилизации системы и превращения агрегативно неустойчивой лиофобной системы в термодинамически устойчивую относительно коагуляции, (псевдо- [c.262]

    В случае полного вытеснения среды из зазора (при прорыве адсорбционно-сольватной оболочки или в вакууме) достигается непосредственное точечное (по одной или нескольким атомным ячейкам) соприкосновение частиц (см. рис. XI—16, б). При этом наряду с ван-дер-ваальсовыми силами в сцеплении частиц могут участвовать также близкодействующие (валентные) силы, реализуемые на площади непосредственного контакта. Их вклад в прочность контакта можно оценить по порядку величины как р1 хЛ 1ЬЧлеа, где Jf — число валентных связей, возникающих в контакте, е — заряд электрона, ео — электрическая постоянная, Ь — характерное межатомное расстояние (несколько А). В таком случае при несколько единиц находим значения И и ниже, т. е. для микронных и более крупных частиц в лиофобных системах вклад близкодействующих сил в прочность контакта оказывается того же порядка (или меньше), что и вклад ван-дер-ваальсовых сил. [c.317]

    Если вернуться к оценке про шости коагуляционной структуры, образованной более или м нее плотно упакованными частицами с г 1 мкм, то для лиофобной системы при [c.378]


Смотреть страницы где упоминается термин Лиофобные системы: [c.237]    [c.197]    [c.119]    [c.242]    [c.11]    [c.141]    [c.290]    [c.377]    [c.378]   
Курс коллоидной химии (1976) -- [ c.26 , c.237 , c.260 ]

Курс коллоидной химии (1964) -- [ c.17 ]




ПОИСК







© 2025 chem21.info Реклама на сайте